
IX Geometrical Olympiad in honour of I.F.Sharygin

Final round. Ratmino, 2013, August 1

Solutions
First day. 8 grade

8.1. (N. Moskvitin) Let ABCDE be a pentagon with right angles at vertices B and E and
such that AB = AE and BC = CD = DE. The diagonals BD and CE meet at point F . Prove
that FA = AB.

First solution. The problem condition implies that the right-angled triangles ABC and AED
are equal, thus the triangle ACD is isosceles (see fig. 8.1a). Then ∠BCD = ∠BCA + ∠ACD =
= ∠EDA +∠ADC = ∠CDE. Therefore, the isosceles triangles BCD and CDE are equal. Hence
∠CBD = ∠CDB = ∠ECD = ∠DEC.

Since the triangle CF D is isosceles and BD = CE, we obtain that BF = F E. Therefore

4ABF = 4AEF . Then ∠AF B =
∠BF E

2
=

180◦ − 2∠F CD

2
= 90◦ − ∠ECD = 90◦ − ∠DBC = ∠ABF ,

hence AB = AF , QED.
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Fig. 8.1а Fig. 8.1b

Second solution. Let BC meet DE at point P (see fig. 8.1b). Notice that ∠CBD = ∠CDB =
= ∠DBE, i.e., BD is the bisector of ∠CBE. Thus F is the incenter of 4PBE. Since the
quadrilateral PBAE is cyclic and symmetrical, we obtain that A is the midpoint of arc BE of
the circle (PBE). Therefore, by the trefoil theorem we get AF = AB, QED.

Remark. The problem statement holds under the weakened condition of equality of side lengths.
It is sufficient to say that AB = AE and BC = CD = DE.

8.2. (D. Shvetsov) Two circles with centers O1 and O2 meet at points A and B. The bisector
of angle O1AO2 meets the circles for the second time at points C and D. Prove that the
distances from the circumcenter of triangle CBD to O1 and to O2 are equal.

First solution. Without loss of generality, suppose that C lies on the segment AD. Let P
be the common point of the lines O1C and O2D (see fig. 8.2). The triangle AO1C is isosceles,
thus ∠O1CA = ∠O1AC = ∠CAO2, therefore O1C ‖ AO2. Similarly, we obtain that O1A ‖ O2D.
Hence O1AO2P is a parallelogram.

Let us prove that the quadrilateral BCPD is cyclic, and O1O2PB is an isosceles trapezoid.
Then the assertion of the problem follows. Indeed, then the circumcenter O of 4BCD is
equidistant from the points B and P, therefore O is equidistant from O1 and O2.

Notice that O1P = AO2 = BO2 and O1B = O1A = O2P, i.e., the triangles BO1P and PO2B
are equal. Therefore ∠BO1P = ∠PO2B, and hence the quadrilateral O1O2PB is cyclic. Then
∠O1O2B = ∠O1PB.

On the other hand, we have ∠BDA =
1

2
∠AO2B = ∠AO2O1 = ∠O1O2B and ∠O2O1P =

= ∠AO2O1. Therefore ∠BDA = ∠O1PB = ∠O2O1P, i.e., the quadrilateral BCPD is cyclic, and
O1O2 ‖ BP. From O1B = O2P we obtain that O1O2PB is an isosceles trapezoid.
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Fig. 8.2

Second solution. By OO1 ⊥ BC and O1O2 ⊥ AB, we get ∠OO1O2 = ∠ABC =
∠AO1C

2
.

Similarly, we obtain ∠OO2O1 =
∠AO2D

2
. It remains to notice that ∠AO1C = ∠AO2D; it can be

shown as in the previous solution.

8.3. (B. Frenkin) Each vertex of a convex polygon is projected to all nonadjacent sidelines.
Can it happen that each of these projections lies outside the corresponding side?

Ответ: no.

Solution. Let AB be the longest side of the polygon (see fig.
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Fig. 8.3

8.3). Let us project all the vertices of the polygon different
from A and B onto AB. Assume that none of the projections lies
on the segment AB; then the projection of some side s different
from AB strictly contains AB. However, this implies that s >
> AB, a contradiction.

8.4. (A. Zaslavsky) The diagonals of a convex quadrilateral ABCD meet at point L. The
orthocenter H of the triangle LAB and the circumcenters O1, O2, and O3 of the triangles LBC,
LCD, and LDA were marked. Then the whole configuration except for points H, O1, O2,
and O3 was erased. Restore it using a compass and a ruler.

Solution. Let O be the circumcenter of the triangle LAB
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Рис. 8.4

(see fig. 8.4). Then the lines OO1 and O2O3 are perpendicular
to BD, while the lines O1O2 and O3O are perpendicular
to AC. Therefore, we can restore the perpendicular bisectors
OO1 and OO3 to the sides LB and LA of the triangle LAB.
The lines ha and hb passing through the orthocenter H of
this triangle and parallel to OO1 and OO3 coincide with the
altitudes of this triangle; i.e., they pass through A and
B, respectively. Hence the reflections of ha and hb in OO3

and OO1, respectively, meet at point L. Now the construction
is evident.
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IX Geometrical Olympiad in honour of I.F.Sharygin

Final round. Ratmino, 2013, August 2

Solutions

Second day. 8 grade

8.5. (B. Frenkin) The altitude AA′, the median BB′, and the angle bisector CC′ of a
triangle ABC are concurrent at point K. Given that A′K = B′K, prove that C′K = A′K.

Solution. Since the point K lies on the bisector of angle C, the
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Fig. 8.5

distance from K to AC is the same as the distance to BC, i.e., this
distance is equal to KA′ (see fig. 8.5). Since KA′ = KB′, this yields
that KB′ ⊥ AC. Thus the median BB′ coincides with the altitude
from B, and hence AB = BC. Then BK and CK are the angle bisectors
in the triangle ABC, therefore AK is also an angle bisector; now,
since AK is the altitude we have AB = AC. Therefore the triangle ABC
is regular, and A′K = B′K = C′K.

8.6. (F. Nilov) Let α be an arc with endpoints A and B (see
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fig.). A circle ω is tangent to segment AB at point T and meets α
at points C and D. The rays AC and T D meet at point E, while
the rays BD and T C meet at point F . Prove that EF and AB are
parallel.

Solution. Let us prove that the quadrilateral CDEF is cyclic (see fig. 8.6); then the
assertion of the problem follows. Indeed, then we have ∠F EC = ∠F DC and ∠F DC = 180◦ −
− ∠BDC = ∠CAB, i.e., F E ‖ AB.

Since AB is tangent to ω, we have ∠T CD = ∠BT D. Furthermore, we get ∠F CE = ∠ACT =
= ∠ACD − ∠T CD = (180◦ − ∠ABD) − ∠BT D = ∠T DB = ∠F DE. Therefore the quadrilateral
CDEF is cyclic, QED.
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Fig. 8.6

8.7. (B. Frenkin) In the plane, four points are marked. It is known that these points are
the centers of four circles, three of which are pairwise externally tangent, and all these
three are internally tangent to the fourth one. It turns out, however, that it is impossible to
determine which of the marked points is the center of the fourth (the largest) circle.

Prove that these four points are the vertices of a rectangle.

Solution. Let O0 and R0 be the center and the radius of the greatest circle, and let O1, O2,
O3 and R1, R2, R3 be the centers and the radii of the remaining circles. Then O0Oi = R0 − Ri

(i = 1, 2, 3) and OiOj = Ri + Rj (i, j = 1, 2, 3, i 6= j). Hence O0O1 − O2O3 = O0O2 − O3O1 =
= O0O3 −O1O2 = R0 − R1 − R2 − R3 := d.

If d > (<)0, then the distance from O0 to any of points O1, O2, O3 is greater (less) than the
distance between two remaining points. This enables us to determine O0 which contradicts
the condition. Indeed, if we colour the longer segments in each of the pairs (O0O1, O2O3),
(O0O2, O1O3), and (O0O3, O1O2) in red and the shorter ones in blue then O0 is the unique
endpoint of three monochromatic segments.
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If d = 0, then the marked points form a quadrilateral with equal opposite sides and equal
diagonals. Such a quadrilateral has to be a rectangle.

8.8. (I. Dmitriev) Let P be an arbitrary point on the arc AC of the circumcircle of a fixed
triangle ABC, not containing B. The bisector of angle APB meets the bisector of angle BAC
at point Pa; the bisector of angle CPB meets the bisector of angle BCA at point Pc. Prove
that for all points P, the circumcenters of triangles PPaPc are collinear.

Solution. Notice first that the lines PPa and PPc meet the circumcircle for the second
time at the midpoints C′ and A′ of the arcs AB and AC, respectively (see fig. 8.8). Thus
∠PaPPc = (∠A + ∠C)/2 = 180◦ − ∠AIC, where I is the incenter of the triangle. Hence all
circles PPaPc pass through I.

Now let us fix some point P and find the second common point J of circles PPaPc and
ABC. For any other point P ′ we have ∠JP ′P ′

c = ∠JP ′A′ = 180◦ − ∠JPA′ = 180◦ − ∠JPPc =
∠JIPc = ∠JIP ′

c (if P and P ′ lie on arcs CJ and AJ, respectively; the remaining cases can be
considered similarly). Thus the circle P ′P ′

aP ′
c also passes through J.

Therefore the circumcenters of all triangles PPaPc lie on the perpendicular bisector of the
segment IJ.
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Рис. 8.8

Remark. Consider a “semiincircle” ω which is tangent to the segments BA, BC and to the arc APC).
In a special case when P is the tangent point of ω and (ABC) we see that J coincides with P. Thus we
can determine J as a touching point of the circumcircle and the semiincircle. It is known that J lies
also on line IS, where S is the midpoint of arc ABC.
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IX Geometrical Olympiad in honour of I.F.Sharygin

Final round. Ratmino, 2013, August 1

Solutions

First day. 9 grade

9.1. (D. Shvetsov) All angles of a cyclic pentagon ABCDE are obtuse. The sidelines AB
and CD meet at point E1; the sidelines BC and DE meet at point A1. The tangent at B to the
circumcircle of the triangle BE1C meets the circumcircle ω of the pentagon for the second
time at point B1. The tangent at D to the circumcircle of the triangle DA1C meets ω for the
second time at point D1. Prove that B1D1 ‖ AE.

Solution. Let us take any points M and N lying outside ω on the rays B1B and D1D,
respectively (see fig. 9.1). The angle MBE1 is equal to the angle BCE1 as an angle between a
tangent line and a chord. Similarly, we get ∠NDA1 = ∠DCA1. Using the equality of vertical
angles we obtain ∠ABB1 = ∠MBE1 = ∠BCE1 = ∠DCA1 = ∠NDA1 = ∠EDD1. Therefore, the
arcs AD1 and EB1 are equal, and the claim follows.
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Fig. 9.1

9.2. (F. Nilov) Two circles ω1 and ω2 with centers O1 and O2 meet at points A and B.
Points C and D on ω1 and ω2, respectively, lie on the opposite sides of the line AB and are
equidistant from this line. Prove that C and D are equidistant from the midpoint of O1O2.
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Solution. Since the points C and D are equidistant from AB, the midpoint M of CD lies
on AB (see fig. 9.2). Let P and Q be the second common points of the line CD with ω1

and ω2, respectively. Then MC · MP = MB · MA = MD · MQ. Since MC = MD, we obtain
that MP = MQ and PC = DQ. Let K and N be the midpoints of PC and DQ, respectively.
Then M is the midpoint of KN. Hence the midline of the right-angled trapezoid O1KNO2 is
the perpendicular bisector of segment CD. Therefore the points C and D are equidistant from
the midpoint of O1O2.

9.3. (I. Bogdanov) Each sidelength of a convex quadrilateral ABCD is not less than 1
and not greater than 2. The diagonals of this quadrilateral meet at point O. Prove that
SAOB + SCOD 6 2(SAOD + SBOC).

Solution. It suffices to prove that one of the ratios
AO

OC
and

BO

OD
is at most 2 and at least

1

2
.

Indeed, assuming that
1

2
6

AO

OC
6 2 we get SAOB 6 2SBOC and SCOD 6 2SAOD; the claim follows.

Thus, let us prove this fact.
Without loss of generality, we have AO 6 OC and BO 6 OD. Assume, to the contrary, that

AO <
OC

2
and BO <

OD

2
. Let A′ and B′ be the points on segments OC and OD, respectively,

such that OA′ = 2OA and OB′ = 2OB (see fig. 9.3). Then we have A′B′ = 2AB ≥ 2. Moreover,
the points A′ and B′ lie on the sides of triangle COD and do not coincide with its vertices;
hence the length of the segment A′B′ is less than one of the side lengths of this triangle. Let
us now estimate the side lengths of COD.

The problem condition yields CD 6 2. Since O lies between B and D, the length of the
segment CO does not exceed the length of one of the sides CB and CD, therefore CO 6 2.
Similarly, DO 6 2. Now, the length of A′B′ has to be less than one of these side lengths,
which contradicts the fact that A′B′ ≥ 2.

Remark. The equality is achieved for the following degenerate quadrilateral. Consider a triangle
ABC with 1 6 AB, BC 6 2 and AC = 3, and take a point D on the segment AC such that CD = 1,
DA = 2.

It is easy to see that the inequality is strict for any non-degenerate quadrilateral.
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Fig. 9.3 Fig. 9.4а

9.4. (N. Beluhov) A point F inside a triangle ABC is chosen so that ∠AF B = ∠BF C =
= ∠CFA. The line passing through F and perpendicular to BC meets the median from A
at point A1. Points B1 and C1 are defined similarly. Prove that the points A1, B1, and C1

are three vertices of some regular hexagon, and that the three remaining vertices of that
hexagon lie on the sidelines of ABC.

First solution. We will reconstruct the whole picture from the other end. Let us start with
some regular hexagon A1B′C1A′B1C′ (see fig. 9.4a). Next, let M be a point inside 4A1B1C1

such that ∠B1MC1 = 180◦ − α, ∠C1MA1 = 180◦ − β, and ∠A1MB1 = 180◦ − γ (this point
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lies inside the triangle A1B1C1 since F lies inside the triangle ABC). Let us draw the lines
through A′, B′, and C′ perpendicular to A1M, B1M, and C1M, respectively. Consider a
triangle ABC formed by them. This triangle is similar to the initial triangle from the problem
statement, so we may assume that it is exactly that triangle.

Thus we are only left to show that the lines AA1, BB1 and CC1 are the medians of 4ABC,
and M is its Fermat point (i.e., M ≡ F ). Let the line parallel to AB through C1 meet CA
and CB at points P and Q, respectively. Construct T = A1M ∩ CA′B. Since ∠A1TA′ = 90◦,
point T belongs to the circumcircle of A1B′C1A′B1C′, and the quadrilateral MC1QT is cyclic.
Therefore ∠C1QM = ∠C1T M = ∠C1TA1 = ∠C1B1A1 = 60◦. Similarly we get ∠QPM = 60◦;
thus 4MPQ is equilateral, and C1 the midpoint of PQ. Now, a homothety with center C
shows that CC1 is a median of 4ABC, and that CM passes through the third vertex of the
equilateral triangle with base AB constructed outside ABC (this is a well-known construction
for the Fermat point). By means of symmetry, the claim follows.

Second solution. Let Ap be a first Apollonius point (see fig. 9.4b). It is known that the
pedal triangle A0B0C0 of Ap is regular. Next, the Apollonius and the Torricelli point are
isogonally conjugate. Therefore their pedal triangles have a common circumcircle ω.

Let us describe the point A1 in a different way. Let E be the projection of F to BC. Then E
lies on ω, and the line EF meets ω for the second time at point A1. Notice that ∠A0EA1 = 90◦;
therefore A0A1 is a diameter of ω. Similarly we may define the points B1 and C1. Thus, the
triangles A1B1C1 and A0B0C0 are symmetric with respect to the center of ω. Therefore, the
hexagon A1B0C1A0B1C0 is regular. Now it remains to prove that the points A1, B1, and C1

lie on the corresponding medians. This can be shown as in the previous solution.
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Fig. 9.4б
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IX Geometrical Olympiad in honour of I.F.Sharygin

Final round. Ratmino, 2013, August 2

Solutions
Second day. 9 grade

9.5 (V. Yassinsky) Points E and F lie on the sides AB and AC of a triangle ABC. Lines EF
and BC meet at point S. Let M and N be the midpoints of BC and EF , respectively. The line

passing through A and parallel to MN meets BC at point K. Prove that
BK

CK
=

F S

ES
.

Solution. Let the lines passing through F and E and parallel to AK meet BC at points P
and Q, respectively (see fig. 9.5). Since N is the midpoint of EF , we have PM = MQ,
therefore CP = BQ and

BK
CK

=
CP
CK

·
BK
BQ

=
CF
CA

·
BA
BE

.

Applying now the Menelaus theorem to triangle AF E and line CB we obtain

CF
CA

·
BA
BE

·
ES
F S

= 1,

QED.
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Fig. 9.5 Fig. 9.6

9.6 (D. Shvetsov, J. Zaytseva, A. Sokolov) A line ` passes through the vertex B of a regular
triangle ABC. A circle ωa centered at Ia is tangent to BC at point A1, and is also tangent to
the lines ` and AC. A circle ωc centered at Ic is tangent to BA at point C1, and is also tangent
to the lines ` and AC.

Prove that the orthocenter of triangle A1BC1 lies on the line IaIc.

Solution. By ∠BAIc = ∠BCIa = 60◦, the reflections of Ic and Ia in BA and BC respectively
lie on AC. On the other hand, from ∠ABIc +∠CBIa = 60◦ = ∠ABC we get that the reflections
of BIc and BIa in AB and BC respectively meet AC at the same point J (see fig. 9.6). Hence
A1C1 is the midline of triangle JIaIc. Then the altitudes of 4A1BC1 from A1 and C1 (which
are parallel to the radii IcC1 and IaA1, respectively) are also the midlines of this triangle,
thus meet at the midpoint of IaIc.

9.7 (A. Karlyuchenko) Two fixed circles ω1 and ω2 pass through point O. A circle of an
arbitrary radius R centered at O meets ω1 at points A and B, and meets ω2 at points C and D.
Let X be the common point of lines AC and BD. Prove that all the points X are collinear as
R changes.

First solution. Let K be the second common point of ω1 and ω2 (see fig. 9.7). It suffices
to prove that ∠OKX = 90◦.
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We know that OA = OB = OC = OD. Therefore, the triangles AOB and COD are isosceles.
Let α and β be the angles at their bases, respectively. Then we have ∠BKC = ∠BKO+∠CKO =
= ∠BAO + ∠CDO = α + β. Since the quadrilateral ACBD is cyclic, we obtain that ∠BXC =

= 180◦ − ∠XBC − ∠XCB = 180◦ − ∠CAD − ∠ADB = 180◦ − 1
2(

︸ ︸
AB +

︸ ︸
CD), where

︸ ︸
AB and

︸ ︸
CD

are the arcs of the circle with center O. We have
︸ ︸
AB = 180◦ − 2α and

︸ ︸
CD = 180◦ − 2β;

thus ∠BXC = ∠BKC, i.e., the quadrilateral BXKC is cyclic. Hence ∠XKB = ∠XCB = 180◦−
− ∠ACB = 90◦ − α. Therefore ∠OKX = ∠BKX + ∠BKO = 90◦, QED.

Second solution. Let OP and OQ be diameters of ω1 and ω2, respectively. Then X ∈ PQ; one
may easily prove this by means of an inversion with center O. Indeed, let S be the common
point of AB and CD, let M and N be the midpoints of AB and CD, respectively, and let Y
be the second common point of the circles (ACS) and (BDS). Since the figures AY BM and
CY DN are similar, we have Y ∈ (OMSN), and the claim follows as Y and (OMSN) are the
images of X and PQ.
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Fig. 9.7

9.8 (V. Protasov) Three cyclists ride along a circular road with radius 1 km counterclock-
wise. Their velocities are constant and different. Does there necessarily exist (in a sufficiently
long time) a moment when all the three distances between cyclists are greater than 1 km?

Answer: no.

Solution. Solution. If one changes the velocities of cyclists by the same value, then the
distances between them stay the same. Hence, it can be assumed that the first cyclist stays
at a point A all the time.
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Fig. 9.8а Fig. 9.8б

Let us inscribe a regular hexagon ABCDEF in the circle. Let M and N be the midpoints of
arcs BC and EF respectively. Suppose the second and the third cyclists start at the point M
with equal velocities and go to opposite directions: the second does towards B, the third does

9



towards C. The distance between them is less than 1 km, until they reach those points. Then
the second one is located less than 1 km away from the first, i.e., from the point A, until
he reaches the point F . Simultaneously, the third one reaches E, and the distance between
the second and the third becomes 1 km. Then this distance is reduced monotone until they
meet at the point N. We obtain a configuration symmetric to the initial one with respect to
the axis AD, with the interchange of the second and the third cyclists. Then the process is
repeated all over again.

Remark. It can be shown that this is the only possible example, up to a shift of velocities of
cyclists. It corresponds to the case when the three velocities form an arithmetic progression. In all
other cases there exists a moment when the distances between cyclists exceed not only 1 km, but

√
2

km! This is equivalent to the following theorem, whose proof is left to the reader:

Theorem. If, under the assumptions of Problem 9.8, the velocities of cyclists do not form an arithmetic
progression, then there exists a moment when the three radii to the cyclists form obtuse angles.

By applying this fact, ancient astronomers could have rigorously shown the impossibility of geo-
centric model of the Universe. To this end, it suffices to consider the orbits of three objects: the
Sun, Mercury, and Venus. Let us denote them by points S, V , M respectively and assume they move
around the Earth (point O) along circular orbits. We suppose that they move on one plane (actually
the planes of their orbits almost coincide). Their angular velocities are known to be different and not
forming an arithmetic progression. Then there exists a moment when all the three angles between the
rays OS, OM and OV are obtuse. Suppose an observer stands on the surface of the Earth at the point
opposite to the direction of the ray OS. He is located on the nightside of the Earth and sees Mercury
and Venus, since the angles SOM and SOV are both obtuse. The angular distance between those two
planets, the angle MOV , is greater than 90◦. However, the results of long-term observations available
for ancient astronomers showed that the angular distance between Mercury and Venus never exceeds
76o. This contradiction shows the impossibility of the geocentric model with circular orbits.
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IX Geometrical Olympiad in honour of I.F.Sharygin

Final round. Ratmino, 2013, August 1

Solutions

First day. 10 grade

10.1 (V. Yassinsky) A circle k passes through the vertices B and C of a triangle ABC with
AB > AC. This circle meets the extensions of sides AB and AC beyond B and C at points P
and Q, respectively. Let AA1 be the altitude of ABC. Given that A1P = A1Q, prove that
∠PA1Q = 2∠BAC.

Solution. Since ∠A1AP = 90◦ − ∠ABC = 90◦ − ∠AQP, the ray AA1 passes through
the circumcenter O of the triangle APQ (see fig. 10.1). This circumcenter also lies on the
perpendicular bisector ` of the segment PQ. Since AB 6= AC, the lines AO and ` are not
parallel, so they have exactly one common point. But both O and A1 are their common points,
so A1 = O. Therefore, the inscribed angle PAQ is the half of the central angle PA1Q.

A

B C

P

Q

A1 = O

`

Рис. 10.1

10.2 (A. Polyansky) Let ABCD be a circumscribed quadrilateral with AB = CD 6= BC. The
diagonals of the quadrilateral meet at point L. Prove that the angle ALB is acute.

Solution. Assume to the contrary that ∠ALB > 90◦. Then we get AB2 > AL2 + BL2

and CD2 > CL2 + DL2; similarly, AD2 6 AL2 + DL2 and BC2 6 BL2 + CL2. Thus, 2AB2 =
= AB2 + CD2 > AD2 + BC2.

On the other hand, since the quadrilateral is circumscribed, we have 2AB = AB + CD =
= BC + AD. This yields AD 6= BC and

2(AD2 + BC2) = (AD + BC)2 + (AD− BC)2 > (2AB)2 = 4AB2.

A contradiction.

10.3 (A. Karlyuchenko) Let X be a point inside a triangle ABC such that XA · BC = XB×
× AC = XC · AB. Let I1, I2, and I3 be the incenters of the triangles XBC, XCA, and XAB,
respectively. Prove that the lines AI1, BI2, and CI3 are concurrent.

Solution 1. Consider a tetrahedron ABCX′ with

AB · CX′ = BC · AX′ = CA · BX′. (*)

Denote by I′
a, I′

b and I′
c the incenters of the triangles BCX′, ACX′, and ABX′. Then (*) implies

that the bisectors AI′
b and BI′

a of the angles X′AC and X′BC meet the segment X′C at the same
point. This implies that the segments AI′

a and BI′
b have a common point. Similarly, each of

them has a common point with the segment CI′
c. Since these three segments are not coplanar,

all three of them have a common point.
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Now, tending X′ to X along the intersection circle of the three corresponding Apollonius
spheres for the pairs (A, B), (B, C), and (A, C), we come to the problem statement.

Solution 2. Let I be the incenter of the triangle ABC, and let A1, B1, and C1 be the feet of
the respective bisectors in this triangle. Let Tc be the common point of the lines CI3 and XI;
define the points Ta and Tb similarly. We will prove that Ta = Tb = Tc.

Since XB/XA = BC/AC, the bisector XI3 of the angle BXA passes through C1. Applying
the Menelaus theorem to the triangle 4XIC1 and the line CI3, and using the properties of
the bisector AI3 of the angle XAC1, we obtain

XTc

TcI
=

XI3

IcC1
·

C1C
CI

=
XA
AC1

·
C1C
CI

=
XA
CI

·
C1C
AC1

=
XA
CI

·
sin A

sin(C/2)
.

Similarly we get
XTb

TbI
=

XA
BI

·
sin A

sin(B/2)
.

But
BI
CI

=
sin(C/2)
sin(B/2)

, so
XTc

TcI
=

XTb

TbI
, as desired.

10.4 (N. Beluhov) We are given a cardboard square of area 1/4 and a paper triangle of
area 1/2 such that all the squares of the side lengths of the triangle are integers. Prove
that the square can be completely wrapped with the triangle. (In other words, prove that the
triangle can be folded along several straight lines and the square can be placed inside the
folded figure so that both faces of the square are completely covered with paper.)

Solution. 1. We say that a triangle is elementary if its area equals
1

2
, and the squares of

its side lengths are all integral. Denote by ∆ the elementary triangle with side lengths 1, 1,
and

√
2.

Now we define the operation of reshaping as follows. Take a triangle ABC; let AM be
one of its medians. Let us cut it along AM, and glue the pieces 4ABM and 4ACM along
the equal segments BM and CM to obtain a new triangle with the side lengths AB, AC,
and 2AM.

2. We claim that for every elementary triangle δ, one may apply to it a series of reshapings
resulting in ∆.

To this end, notice that a reshaping always turns an elementary triangle into an elementary
triangle: indeed, reshaping preserves the area, and, by the median formula 4m2

a = 2b2 +2c2−
a2, it also preserves the property that the side lengths are integral.

Now let us take an arbitrary elementary triangle δ. If its angle at some vertex is obtuse,
then let us reshape it by cutting along the median from this vertex; the maximum side length
of the new triangle will be strictly smaller than that of the initial one. Let us proceed on this
way. Since all the squares of the side lengths are integral, we will eventually stop on some
triangle δ′ which is right- or acute-angled. The sine of the maximal angle of δ′ is not less
than

√
3/2, so the product of the lengths of the sides adjacent to this angle is at most 2/

√
3.

Hence both of them are unit, and the angle between them is right. Thus δ′ = ∆, as desired.
3. Conversely, if δ′ is obtained from δ by a series of reshapings, then δ can also be obtained

from δ′. Therefore, each elementary triangle δ can be obtained from ∆.
4. Now, let us say that a triangle δ forms a proper wrapping if our cardboard square can

be wrapped up completely with δ in such a way that each pair of points on the same side of δ
equidistant from its midpoint comes to the same point on the same face of the folded figure.
The triangle ∆ forms a proper wrapping when folded along two its shorter midlines.

Suppose that a triangle δ = ABC forms a proper wrapping, and let AM be one of its
medians. Consider the corresponding folding of this triangle. In it, let us glue together the
segments BM and CM (it is possible by the definition of a proper wrapping), and cut our
triangle along AM. We will obtain a folding of the reshaping of δ along AM; thus, this
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reshaping is also a proper wrapping. Together with the statement from part 3, this implies
the problem statement.

Remark 1. From this solution, one may see that the following three conditions are equiva-
lent:

(a) the triangle ABC is elementary;
(b) there exists a copy of 4ABC such that all its vertices are integer points;
(c) there exist six integers p, q, r, s, t, u such that p+q+r = s+t+u = 0 and p2 +s2 = AB,

q2 + t2 = BC, r2 + u2 = CA.

Remark 2. The equivalence of the conditions (b) and (c) is obvious. The fact that (a) is
also equivalent to them can be proved in different ways. E.g., one may start from Heron’s
formula; for the elementary triangle with side lengths

√
a,
√

b,
√

c it asserts 2(ab+bc+ca)−
(a2 + b2 + c2) = 1. One may show — for instance, by the descent method — that all integral
solutions of this equation satisfy (c).

Another approach is the following one. Consider an elementary triangle ABC and let it
generate a lattice (that is, take all the endpoints X such that

−−→
AX = k

−→
AB+`

−→
AC with integral k

and `). Using the cosine law, one easily gets that all the distances between the points of this
lattice are roots of integers. Now, from the condition on the area, we have that the minimal
area of a parallelogram with vertices in the lattice points is 1. Taking such a parallelogram
with the minimal diameter, one may show that it is a unit square1.

This lattice also helps in a different solution to our problem. For convenience, let us
scale the whole picture with coefficient 2; after that, the vertices of the triangle have even
coordinates, and its area is 2, and we need to wrap a unit square. Now, let us paint our
checkered plane chess-like and draw on it the lattice of the triangles equal to ABC; their
vertices are all the points with even coordinates. Notice that all the triangles are partitioned
into two classes: the translations of ABC and the symmetric images of it.

1

1

2 2

3

3

4

4

a

a

b

b

c c

d

d

Рис. 10.4

Now, let us wrap a black square with vertex A with the triangle ABC, folding it by the
sides of the cells. Then a black face of the square will get all black parts of the triangle; the
parts from the black squares in even rows will be shifted, while those from the other black
squares will be reflected at some points.

On the other hand, all the black squares in the even rows are partitioned by the triangles
in the same manner; the partition of any other black square again can be obtained by a
reflection of that first partition. Such a reflection interchanges the two classes of triangles.
Finally, now it is easy to see that our black square will be completely covered: those its parts
which are in the triangles of the first class — by the translations of the parts of ABC, and
the others — by the reflections of the other black parts of ABC. The same applies to the
other face of the square.

1Cf. problem 10.7 from the Final round of the 5th olympiad in honour of I.F.Sharygin, 2009.
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IX Geometrical Olympiad in honour of I.F.Sharygin

Final round. Ratmino, 2013, August 2

Solutions

Second day. 10 grade

10.5 (D. Shvetsov) Let O be the circumcenter of a cyclic quadrilateral ABCD. Points E
and F are the midpoints of arcs AB and CD not containing the other vertices of the quadrilate-
ral. The lines passing through E and F and parallel to the diagonals of ABCD meet at
points E, F , K, and L. Prove that line KL passes through O.

Solution. For concreteness, let K lie on the line parallel to AC through E, as well as on
the line parallel to BD through F (see fig. 10.5). Notice that

](KE, EF ) = ](AC, EF ) =

︸ ︸
CF +

︸ ︸
AE

2
=

︸ ︸
F D +

︸ ︸
EB

2
= ](BD, EF ) = ](KF , EF ).

This means that the triangle KEF is isosceles, KE = KF . Hence the parallelogram EKF L is
in fact a rhombus, and KL is the perpendicular bisector of EF , thus it contains O.

A

B

C

D

E
F

K

L

O

Рис. 10.5

10.6 (D. Prokopenko) The altitudes AA1, BB1, and CC1 of an acute-angled triangle ABC
meet at point H. The perpendiculars from H to B1C1 and A1C1 meet the rays CA and CB at
points P and Q, respectively. Prove that the perpendicular from C to A1B1 passes through
the midpoint of PQ.

Solution 1. Let N be the projection of C to A1B1. Consider a homothety h centered at C
and mapping H to C1; thus h(P) = P1 and h(Q(= Q1. We have C1P1 ⊥ C1B1 and C1Q1 ⊥ C1A1;
it suffices to prove now that the line CN bisects P1Q1.

Let K and L be the projections of P1 and Q1, respectively, to the line A1B1. It is well
known that ∠CB1A1 = ∠AB1C1; so, ∠P1B1K = ∠P1B1C1, and the right-angled triangles P1B1K
and P1B1C1 are congruent due to equal hypothenuses and acute angles. Hence B1K = B1C1.
Similarly, A1L = A1C1, so the length of KL equals the perimeter of 4A1B1C1.

Since C is an excenter of the triangle A1B1C1, the point N is the tangency point of the
corresponding excircle with A1B1, so B1N = p−B1C1. Then we have KN = B1C1+p−B1C1 = p,
thus N is the midpoint of KL. Finally, by the parallel lines P1K, CN, and Q1L we conclude
that the line CN bisects P1Q1, as required.
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Рис. 10.6а

Solution 2. Denote ∠BAC = α and ∠ABC = β; then we also have ∠ACC1 = 90◦ − α and
∠BCC1 = 90◦ − β. By 4AB1C1 ∼ 4A1BC1 ∼ 4ABC we get ∠HPC = 90◦ − ∠AB1C1 = 90◦ − β;
similarly, ∠HQC = 90◦ − α. Next, let the perpendicular from C to A1B1 meet PQ at X. Then
∠PCX = 90◦ − β and ∠QCX = 90◦ − α.

We need to show that CX is a median in 4CPQ; since ∠PCX = ∠QCH, this is equivalent
to the fact that CH is its symmedian. Therefore we have reduced the problem to the following
known fact (see, for instance, A. Akopyan, “Geometry in figures”, problem 4.4.6).

A B

C

H A1

B1

C1

P

Q

X

L

C

H

P

Q

Y

Рис. 10.6б Рис. 10.6в

Lemma. Assume that a point H inside a triangle CPQ is chosen so that ∠CPH = ∠QCH
and ∠CQH = ∠PCH. Then CH is a symmedian in this triangle.

Proof. The triangles PHC and CHQ are similar due to two pairs of equal angles. Now,
let Y be the second intersection point of the circumcircle of 4CPQ with CH. Then ∠Y PH =
= ∠Y PC−∠CPH = (180◦−∠Y QC)−∠Y CQ = ∠HY Q, and hence the triangles PHY and Y HQ
are also similar. From these similarities one gets(

PY
Y Q

)2

=
PH
HY

·
HY
HQ

=
PH
HQ

=

(
PC
CQ

)2

,

so CPY Q is a harmonic quadrilateral. This is equivalent to the statement of the Lemma.

Remark. One may easily obtain from the proof of the Lemma that H is a midpoint of CY .
Another proof of the Lemma (and even of the problem statement) may be obtained as follows.

After noticing that the triangles PHC and CHQ are similar, it is easy to obtain the equality
CP
CQ

=

=
PH
HC

=
sin∠PCH
sin∠QCH

=
sin∠QCX
sin∠PCX

.

10.7 (B. Frenkin) In the space, five points are marked. It is known that these points are
the centers of five spheres, four of which are pairwise externally tangent, and all these
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four are internally tangent to the fifth one. It turns out, however, that it is impossible to
determine which of the marked points is the center of the fifth (the largest) sphere. Find the
ratio of the greatest and the smallest radii of the spheres.

Answer.
√

7 +
√

3√
7−

√
3

=
5 +

√
21

2
.

Solution. Denote by O and O′ two possible positions of the center of the largest sphere
(among the five marked points). and denote by A, B, and C the other three marked points.

Consider the points O, O′, A, and B. In the configuration of spheres where O is the center
of the largest sphere, denote by R, r ′, ra, and rb the radii of the spheres centered at O, O′,
A, and B, respectively. Then we have OO′ = R − r ′, OA = R − ra, OB = R − rb, O′A = r ′ + ra,
O′B = r ′ + rb, and AB = ra + rb, which yields OO′ − AB = OA − O′B = OB − O′A; denote this
common difference by d. Similarly, from the configuration with O′ being the center of the
largest sphere we obtain d = OO′ − AB = O′A − OB = O′B − OA = −d. Thus d = 0, and
therefore OO′ = AB, OA = O′B, and OB = O′A.

Applying similar arguments to the tuples (O, O′, A, C) and (O, O′, B, C) we learn OO′ =
= AB = AC = BC and OA = O′B = OC = O′A = OB = O′C. So, the triangle ABC is equilateral
(let its side length be 2

√
3), and the regular pyramids OABC and O′ABC are congruent.

Thus the points O and O′ are symmetrical to each other about (ABC). Moreover, we have
OO′ = 2

√
3, so the altitude of each pyramid has the length

√
3. Let H be the common foot of

these altitudes, then HO = HO′ =
√

3 and HA = HB = HC = 2, thus OA = O′A =
√

7. So the
radii of the spheres centered at A, B, and C are equal to

√
3, while the radii of the other two

spheres are equal to
√

7−
√

3 and
√

7 +
√

3, whence the answer.

10.8 (A. Zaslavsky) In the plane, two fixed circles are given,

A B

C

D

P

C ′

I

˙

ω

Рис. 10.8

one of them lies inside the other one. For an arbitrary point C
of the external circle, let CA and CB be two chords of this circle
which are tangent to the internal one. Find the locus of the
incenters of triangles ABC.

Solution. Denote by Ω and ω the larger and the smaller circle,
and by R and r their radii, respectively (see fig. 10.8). Denote
by D the center of ω. Let C′ be the midpoint of the arc AB of Ω
not containing C, and let I be the incenter of 4ABC. Then the
points I and D lie on CC′; next, it is well known that C′I = C′A =
2R sin ∠ACC′.

On the other hand, denoting by P the tangency point of AC and ω, we have sin ∠ACC′ =
= PD/CD = r/CD. Next, the product d = CD · C′D is negated power of the point D with
respect to Ω, thus it is constant. So we get C′I = 2Rr/CD = C′D · 2Rr/d, whence

−→
ID =

−−→
C′D−

−→
C′I =

−−→
C′D ·

(
1− 2Rr

d

)
.

Thus, the point I lies on the circle obtained from Ω by scaling at D with the coeffici-

ent
2Rr

d
− 1.

Conversely, from every point I of this circle, one may find the points C and C′ as the
points of intersection of ID and Ω; the point C′ is chosen as the image of I under the inverse
scaling. For the obtained point C, the point I is the desired incenter; hence our locus is the
whole obtained circle.

Remark. If 2Rr = d, the obtained locus degenerates to the point D. In this case, one may obtain
from our solution the Euler formula for the distance between the circumcenter and the incenter of a
triangle.
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