
X Geometrical Olympiad in honour of I.F.Sharygin
Final round. Ratmino, 2014, July 31

Solutions
First day. 8 grade

8.1. (J. Zajtseva, D. Shvetsov) The incircle of a right-angled triangle ABC touches its catheti AC and
BC at points B1 and A1, the hypotenuse touches the incircle at point C1. Lines C1A1 and C1B1 meet CA
and CB respectively at points B0 and A0. Prove that AB0 = BA0.

First solution. Consider an excircle with center
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Fig. 8.1

IA touching side AC at point B2 and the extension of
side BC at point A′

0. Since IAB2CA′
0 is a square, we

have IAA′
0 = B2C. It is known that B2C = AB1, thus

IAA′
0 = AB1. Then A′

0B1 ‖ IAA, but IAA ‖ B1C1,
therefore, A′

0, B1, C1 are collinear and A′
0 coincides with

A0, thus BA0 as a tangent to the excircle is equal to the
semiperimeter of ABC. Similarly we obtain that AB0 is
equal to the semiperimeter, therefore AB0 = BA0.

Second solution. Since segments CA1 and CB1 are
equal to the radius r of the incircle, and lines C1A1,
C1B1 are perpendicular to the bisectors of angles B
and A respectively, we obtain from right-angled triangles
CA0B1 and CB0A1 that A0C = r

tan A
2

, B0C = r
tan B

2

. On
the other hand AC = r+ r

tan A
2

, BC = r+ r
tan B

2

. Therefore
AB0 = AC + CB0 = BC + CA0 = BA0.

8.2. (B. Frenkin) Let AHa and BHb be altitudes, ALa and BLb be angle bisectors of a triangle ABC.
It is known that HaHb ‖ LaLb. Is it necessarily true that AC = BC?

Answer: yes.
First solution. Since triangles HaHbC and ABC are similar, triangles LaLbC and ABC are also

similar, i.e LaC/AC = LbC/BC. Thus triangles ALaC and BLbC are similar. Thus, ∠LaBLb = ∠LbALa,
but these angles are equal to the halves of angles A and B. Therefore AC = BC.
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Second solution. Since HaHb and AB are antiparallel wrt AC and BC, LaLb and AB are also
antiparallel wrt AC and BC, thus quadrilateral ALbLaB is cyclic. Then ∠LaBLb = ∠LbALa and AC = BC.

8.3. (A. Blinkov) Points M and N are the midpoints of sides AC and BC of a triangle ABC. It is
known that ∠MAN = 15◦ and ∠BAN = 45◦. Find the value of angle ABM .

Answer: 75◦.
First solution. Extend segment MN and consider such points K and L that KM = MN = NL (fig.

8.3Ю). Since M is the midpoint of segments AC and KN , we obtain that AKCN is a parallelogram.
then ∠CKM = 45◦, ∠KCM = 15◦. Consider such point P on segment CM that ∠CKP = 15◦. Segment
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KP divides triangle KCM into two isosceles triangles. Also ∠PMN = 60◦, hence triangle MPN is
regular. Triangles PLN and PKM are equal, triangle CPL is isosceles and right-angled, thus ∠CLN =
= ∠CLP + ∠MLP = 75◦ = ∠ABM , because CLBM is a parallelogram.
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Second solution. Let G be the centroid of ABC, F be the midpoint GB, and GFO be the regular
triangle such that points O and A lie in the same semiplane wrt MB. Since ∠MOB = 120◦, O is the
circumcenter of triangle MAB, also we have ∠MOG = 30◦ = 2∠MAG, therefore AG meet OG on the
circumcircle of AMB, i.e. A, O, G are collinear. Then 75◦ = ∠MOA/2 = ∠ABN .

8.4. (T. Kazitsyna) Tanya has cut out a triangle from checkered paper as shown in the picture. The
lines of the grid have faded. Can Tanya restore them without any instruments only folding the triangle
(she remembers the triangle sidelengths)?
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Solution. Let ABC be the given triangle (AC = BC). It is evident that we can find the midpoint of
an arbitrary segment. Construct the median AA0, and find on it such point A1 that AA1 = AA0/4. By
Thales theorem line CA1 is the grid line intersecting AB at point C1 such that AC1 = AB/7 (fig.). Now
constructing segments C1C2 = C2C3 = · · · = C5C6 = AC1, we find all nodes lying on AB. Folding the
triangle by the line passing through C2 in such way that C3 be on CC1, we restore the grid line passing
through C2, etc. The perpendicular lines can be restored similarly.
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X Geometrical Olympiad in honour of I.F.Sharygin
Final round. Ratmino, 2014, August 1

Solutions
Second day. 8 grade

8.5. (A. Shapovalov) A triangle with angles of 30, 70 and 80 degrees is given. Cut it by a straight line
into two triangles in such a way that an angle bisector in one of these triangles and a median in the other
one drawn from two endpoints of the cutting segment are parallel to each other. (It suffices to find one
such cutting.)

Solution. Let in triangle ABC ∠A = 30◦, ∠B = 70◦, ∠C =
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= 80◦. Take an altitude AH. Then ∠CAH = ∠MHA = 10◦, where
M is the midpoint of AC. Also ∠HAL = 10◦, where L is the foot of
the bisector of triangle HAB from vertex A. Therefore the median
of triangle AHC from H and the bisector of triangle BAH from
A are parallel, and AH is the desired cutting segment.

8.6. (V. Yasinsky) Two circles k1 and k2 with centers O1 and
O2 are tangent to each other externally at point O. Points X and
Y on k1 and k2 respectively are such that rays O1X and O2Y are parallel and codirectional. Prove that
two tangents from X to k2 and two tangents from Y to k1 touch the same circle passing through O.

Solution. Let S be the common point of XO2 and Y O1. Let r1 and r2 be the radii of the corresponding
circles. Then XS

SO2
=

O1S

SY
=

r1

r2
=

O1O

OO2
. Thus SO =

r1

r1 + r2
O2Y =

r1r2

r1 + r2
.
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Fig. 8.6

Let XZ be a tangent from X to, and Z ′ be the projection of S to XZ. Then SZ ′ =
r1

r1 + r2
O2Z =

=
r1r2

r1 + r2
= SO. Similarly the distance from S to three remaining tangents is equal to SO, i.e. S is the

center of the desired circle.

8.7. (Folklor) Two points on a circle are joined by a broken line shorter
than the diameter of the circle. Prove that there exists a diameter which
does not intersect this broken line.

Solution. Let A and B be the endpoints of the broken line. Consider
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the diameter XY parallel to AB. Let C be the reflection of B in XY , then
AC is a diameter of the circle. Consider an arbitrary point Z on XY . Since
AZ + BZ = AZ + CZ ≥ AC, Z can not lie on the broken line, therefore
XY is the desired diameter.

8.8. (Tran Quang Hung) Let M be the midpoint of the chord AB of a
circle centered at O. Point K is symmetric to M with respect to O, and
point P is chosen arbitrarily on the circle. Let Q be the intersection of the
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line perpendicular to AB through A and the line perpendicular to PK through P . Let H be the projection
of P onto AB. Prove that QB bisects PH.

First solution Let QA intersect the circle (O) at C which is distinct from A. Since BC is the diameter
of the circle (O), we obtain that BC and MK bisect each other at the center of the circle, which implies
that the quadrilateral CKBM is a parallelogram. Furthermore, M is the midpoint of AB, then CKMA
is a rectangle since one of its angles is right. We shall prove that MQ is perpendicular to PC. We have

MC2 −MP 2 −QC2 + QP 2 = (CK2 + MK2)− (2PO2 + 2OK2 − PK2)− (QK2 − CK2)+

+ (QK2 − PK2) = 2CK2 + 4OK2 − 2PO2 − 2OK2 = 2CK2 + 2OK2 − 2OC2 = 0.

Hence, MQ is perpendicular to PC. Let BP meet QA at R. Notice that CB is a diameter of (O), then
BR is perpendicular to PC. Thus, it follows that MQ is parallel to BR. Q is the midpoint of AR, which
follows from the fact that M is the midpoint of AB. Hence, QB bisects PH.
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Fig. 8.8а Fig. 8.8b

Second solution. Note that ∠PBA 6= 90◦; in the other case PK ‖ AB, and point Q doesn’t exist.
Then BP meets AQ at point R. Since triangles BPH and BRA are homothetic, we have to prove that Q
is the midpoint of AR.

Let point P ′ be opposite to P . Then PA ⊥ P ′A, PR ⊥ P ′B, AR ⊥ AB, i.e. the correspondent sides
of triangles P ′AB and PAR are perpendicular. Thus these triangles are similar and their medians from P
and P ′ are also perpendicular. Using the symmetry wrt O we obtain that P ′M ‖ PK ⊥ PQ. Therefore
PQ is the median in 4PAR.
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X Geometrical Olympiad in honour of I.F.Sharygin
Final round. Ratmino, 2014, July 31

Solutions
First day. 9 grade

9.1. (V. Yasinsky) Let ABCD be a cyclic quadrilateral. Prove that AC > BD if and only if

(AD −BC)(AB − CD) > 0.

First solution. Without loss of generality we can suppose that arcs ABC and BCD are not greater
than a cemicircle. Then ^ AD = 2π− ^ ABC− ^ BCD+ ^ BC >^ BC. Since arc ABCD is also
greater than arc BC, we obtain that AD > BC.

Now if AC > BD, then ^ ABC >^ BCD, ^ AB >^ CD and AB > CD. If AC < BD all
inequalities are opposite.
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Fig. 9.1

Second solution. Let M , N be the midpoints of AC and BD, L be their common point, and O be
the circumcenter. Let AL be the longest of segments AL, BL, CL, DL. Since AL · CL = BL ·DL, CL is
the shortest of these segments. Then LM > LN , OM < ON and AC > BD. Also since triangles ALB

and DLC are similar we obtain that AB

CD
=

AL

DL
, i.e AB > CD. By the same way using the similarity of

triangles ALD and BLC we obtain AD > BC.

Third solution. Note that AC = 2R sin B and BD = 2R sin A, thus inequality AC > BD is equivalent
to sin B > sin A.

Now (AD − BC)(AB − CD) > 0 ⇔ AD · AB + BC · CD > AD · CD + BC · AB, which is equivalent
to (multiply to 1

2
sin A sin B = 1

2
sin A sin D = 1

2
sin C sin B).(

AD · AB sin A

2
+

BC · CD sin C

2

)
sin B >

(
AD · CD sin D

2
+

BC · AB sin B

2

)
sin A ⇔

⇔ (S(DAB) + S(BCD)) sin B > (S(CDA) + S(ABC)) sin A ⇔
⇔ S(ABCD) sin B > S(ABCD) sin A ⇔ sin B > sin A.

9.2. (F. Nilov) In a quadrilateral ABCD angles A and C are right. Two circles with diameters AB and
CD meet at points X and Y . Prove that line XY passes through the midpoint of AC.

Solution. Let M , N , K be the midpoints of AB, CD and AC respectively. Then the degree of point
K wrt the circle with diameter AB is equal to KM2 −MA2 =

CB2 −AB2

4
, and its degree wrt the circle

with diameter CD is equal to AD2 − CD2

4
. Since AB2 + AD2 = BD2 = BC2 + CD2, we obtain that these

degrees are equal.

1
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Fig. 9.2

9.3. (E. Diomidov) An acute angle A and a point E inside it are given. Construct points B, C on the
sides of the angle such that E is the center of the Euler circle of triangle ABC.

First solution. Let l1 and l2 be the arms of ∠A so that rotating l1 about A to an angle α < 90◦ maps
it onto l2. Rotate l2 about E to an angle 2α and let its image meet l1 at Mb and B be the reflection of A
in Ma. The vertex C is constructed analogously.
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Fig. 9.3

Second solution. Let O and H be the circumcenter and the orthocenter of the sought triangle. Then
E is the midpoint of OH, ∠BAO = ∠HAC and AH = 2AO cos ∠A. Therefore the composition of the
reflection about the bisector of angle A, the homothety with center A and the coefficient equal to 2 cos ∠A
and the reflection around E is a similarity with center O. Thus finding the center of this similarity we can
construct B and C as the second common points of the arms of the given angle and the circle with center
O, passing through A.

Note. If ∠A = 60◦ the considered similariry is the reflection about the line passing through E and perpendicular
to the bisector of angle A. Thus we can take as O an arbitrary point of this line. In the other cases the solution is
unique.

9.4. (Mahdi Etesami Fard) Let H be the orthocenter of a triangle ABC. Given that H lies on the
incircle of ABC , prove that three circles with centers A, B, C and radii AH, BH, CH have a common
tangent.

First solution. Let Ha, Hb, Hc be the feet of the altitudes. Since AH ·HHa = BH ·HHb = CH ·HHc,
there exists an inversion about a circle with center H, transforming A, B, C to Ha, Hb, Hc respectively (if
the triangle is acute-angled take a composition of the inversion and the reflection around H). This inversion
transforms the sidelines of the triangle to the circles with diameters AH, BH, CH, and it transforms the
incircle to the line touching these three circle. The homothety with center H and the coefficient 2 transforms
this line to the sought one.

Second solution. Let I be the center of the incircle, A1, B1, C1 be its touching points with BC, AC, AB
respectively, and A2, B2, C2 be such points on three circles that 4A1IH ∼ 4HAA2, 4B1IH ∼ 4HBB2

2



and 4C1IH ∼ 4HCC2. The tangents to the circles in these points and the tangent to the incircle in H

are parallel; prove that these three tangents coincide, i.e. the projections of vectors
−−→
HA2,

−−→
HB2 and

−−→
HC2

to IH are equal. It is evident that they are codirectional. Since the angles formed by HA2 with IH and
IA1 are equal, the first projection are equal to the projection of HA2 to AH, i.e. AH

r
·HHa. Find similarly

the remaining projections and note that AH ·HHa = BH ·HHb = CH ·HHc.
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X Geometrical Olympiad in honour of I.F.Sharygin
Final round. Ratmino, 2014, August 1

Solutions
Second day. 9 grade

9.5. (D. Shvetsov) In triangle ABC ∠B = 60◦, O is the circumcenter, and L is the foot of an angle
bisector of angle B. The circumcirle of triangle BOL meets the circumcircle of ABC at point D 6= B.
Prove that BD ⊥ AC.

Solution. Let H be the orthocenter of ABC, and D′ be the reflection
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Fig. 9.5

of H in AC. Then D′ lies on the circumcircle, and since ∠B = 60◦, we
have BO = BH. Thus, since BL is the bisector of angle OBH, then
LO = LH = LD′. Therefore BOLD′ is a cyclic quadrilateral, i.e. D′

coincides with D.

9.6. (A. Polyansky) Let I be the incenter of triangle ABC, and M , N
be the midpoints of arcs ABC and BAC of its circumcircle. Prove that
points M , I, N are collinear if and only if AC + BC = 3AB.

First solution. Let A1, B1, C1 be the midpoints of arcs BC, CA,
AB of the circumcircle, not containing the other vertices of ABC. It is
evident that MN and A1B1 are equal and parallel. Therefore they cut
equal segments CC2 and IC1, where C2 is the midpoint of CI, on the line
CC1, perpendicular to MN . Since C1 is the circumcenter of triangle AIB we obtain that C2A0 = C2C =
IC1 = C1A = C1B (A0 and B0 are the touching points of the incircle with BC and CA respectively). Thus
triangles C2CA0 and C1AB are equal (AB = CA0). From this AC + CB = AB0 + B0C + CA0 + A0B =
= 2AB + AB0 + A0B = 3AB. Similarly we obtain the opposite assertion.
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Fig. 9.6а Fig. 9.6b

Second solution. Let J be the center of the excircle touching side AB. Then M and N are the centers
of circles ACJ and BCJ , and therefore MN is the perpendicular bisector to segment CJ , i.e. I is the
midpoint of CJ . Using the homothety with center C and the coefficient 1/2 we obtain that the incircle
touches the medial line parallel to AB. The trapezoid formed by this medial line and the sidelines of ABC
is circumscribed if the sought equality is correct.

9.7. (N. Beluhov) Nine circles are drawn around an arbitrary triangle as in the figure. All circles tangent
to the same side of the triangle have equal radii. Three lines are drawn, each one connecting one of the
triangle’s vertices to the center of one of the circles touching the opposite side, as in the figure. Show that
the three lines are concurrent.

Solution. Introduce the following notation. Let ra, rb, rc be the radii of the circles centered at Oa, Ob,
Oc, respectively. Let da(X) be the distance from X to BC, and define db and dc analogously.
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The figure composed of the lines CA and CB and the first three circles in the chain tangent to CA,
counting from C, is similar to the figure composed of the lines CB and CA and the chain tangent to CB.
Therefore, da(Ob) : rb = db(Oa) : ra. Analogous reasoning applies to the vertices A and B.

A
B

C

Oa

Ob

Oc

Fig. 9.7а Fig. 9.7b

We have, therefore,
dc(Oa)

db(Oa)
· da(Ob)

dc(Ob)
· db(Oc)

da(Oc)
=

ra

rc

· rc

rb

· rb

ra

= 1,

and the claim follows.

9.8. (N. Beluhov, S. Gerdgikov) A convex polygon P lies on a flat wooden table. You are allowed to
drive some nails into the table. The nails must not go through P , but they may touch its boundary. We
say that a set of nails blocks P if the nails make it impossible to move P without lifting it off the table.
What is the minimum number of nails that suffices to block any convex polygon P?

Solution. If P is a parallelogram, then you need at least four nails to block it. Indeed, if there is a side
s of P such that no nail touches the interior of s, then you can slide P in the direction determined by the
two sides adjacent to s.

Now let P be an arbitrary convex polygon. We will show that four nails suffice to block P .
A set of nails blocks P if and only if, for every sufficiently small movement f (i.e., for every translation

to a sufficiently small distance and every rotation to a sufficiently small angle), the interior of the image
f(P ) of P covers some nail.
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Fig. 9.8а Fig. 9.8b

Let the circle c of center O be one of the largest circles contained within P . Let A1, A2, ... Ak be the
points at which c touches P ’s boundary, and let H be their convex hull.

Suppose that there are two vertices U and V of H such that UV is a diameter of c. Place two nails at
U and V . It is easy to see that, since the sides of P that contain U and V are parallel, the only movements
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still permitted to P are the translations in a direction perpendicular to UV . (Indeed, all other directions
of translation would cause P to cover either U or V when the translation distance is small enough; all
clockwise rotations whose center lies to the left of the ray

−−→
UV would cause P to cover V when the rotation

angle is small enough; all clockwise rotations whose center lies to the right of
−−→
UV would cause P to cover

U when the rotation angle is small enough; and so on.) A third nail prevents P from sliding to the left of
−−→
UV , and a fourth one prevents it from sliding to the right.

We are left to consider the case when no side or diagonal of H contains O.
Suppose that O 6∈ H. Let PQ be that side of H which separates H and O and let the tangents to c at

P and Q meet in T . Then a homothety of center T and ratio larger than and sufficiently close to one maps
c onto a larger circle contained within P : a contradiction.

Therefore, O ∈ H. Consider an arbitrary triangulation π of H and let ABC be that triangle in π which
contains O. (A, B, and C being three of the contact points of H with the boundary of P .)

Since no side or diagonal of H contains O, O lies in the interior of 4ABC. It is easy to see, then — as
above — that three nails placed at A, B, and C block P .
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X Geometrical Olympiad in honour of I.F.Sharygin
Final round. Ratmino, 2014, July 31

Solutions
First day. 10 grade

10.1. (I. Bogdanov, B. Frenkin) The vertices and the circumcenter of an isosceles triangle lie on four
different sides of a square. Find the angles of this triangle.

Answer. 15◦, 15◦ and 150◦.
Solution. Let the circumcenter O of triangle XY Z lie on side AB, and its

A

B C

D

O

X

Y

Z

Fig. 10.1

vertices X, Y , Z lie on sides BC, CD, DA of square ABCD. Since segment
OY intersect segment XZ, angle XY Z is obtuse, thus XZ is the base of the
triangle. Then OY ⊥ XZ; since segments OY and XZ are perpendicular and
their projections to perpendicular lines BC and AB respectively are equal, we
obtain that these segments are also equal, i.e. the side of the triangle is equal
to its circumradius. Since angle XY Z is obtuse, we obtain that ∠XY Z = 150◦,
then two remaining angles are equal to 15◦.

10.2. (A. Zertsalov, D. Skrobot) A circle, its chord AB and the midpoint W
of the minor arc AB are given. Take an arbitrary point C on the major arc AB.
The tangent to the circle at C meets the tangents at A and B at points X and Y respectively. Lines WX
and WY meet AB at points N and M respectively. Prove that the length of segment NM does not depend
on point C.

First solution. Let T be the common point of AB and CW . Then AT and AC are antiparallel wrt
angle AWC. Since WX is the symedian of triangle CAW , it is the median of triangle ATW , Thus N is
the midpoint of AT . Similarly M is the midpoint of BT , i.e. MN = AB/2.
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Рис. 10.2

Second solution. Consider circle w, touching XY at C and touching AB (at point T ). It is easy to
see that WX is the radical axis of A and w, i.e. it passes through the midpoint N of segment AT , Similarly
WY passes through the midpoint M of segment ZB. Thus MN = AB/2.

10.3. (A. Blinkov) Do there exist convex polyhedra with an arbitrary number of diagonals (a diagonal
is a segment joining two vertices of a polyhedron and not lying on the surface of this polyhedron)?

Answer. Yes.
Solution. Let SA1 . . . An+2 be a (n + 2)-gon pyramid and TSAn+1An + 2 be a pyramid with base

SAn+1An + 2 and sufficiently small altitude. Then the diagonals of polyhedron TSA1 . . . An+2 are segments
TA1, . . . , TAn.
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10.4. (A. Garkavyj, A. Sokolov) Let ABC be a fixed triangle in the plane. Let D be an arbitrary point
in the plane. The circle with center D, passing through A, meets AB and AC again at points Ab and Ac

respectively. Points Ba, Bc, Ca and Cb are defined similarly. A point D is called good if the points Ab, Ac,
Ba, Bc, Ca, and Cb are concyclic. For a given triangle ABC, how many good points can there be?

Answer. 4.
Solution. It is evident that the circumcenter O satisfies the condition. Now let D does not coincide

with O. Let A′, B′, C ′ be the projections of D to BC, CA, AB respectively. Then the midpoints of segments
AB and AbBa are symmetric wrt C ′, therefore the perpendicular bisector to AbBa passes through point
O′, symmetric to O wrt D. The perpendicular bisectors to AcCa and BcCb also pass through O′, thus O′

is the center of the circle passing through six points.
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Fig. 10.4а

Since points D and O′ are on equal distances from Ab and Ac, line DO′ is the perpendicular bisector to
AbAc. But AbAc ‖ B′C ′, therefore DO′ ⊥ B′C ′. Similarly DO′ ⊥ A′B′, i.e. points A′, B′, C ′ are collinear.
Thus, D lies on the circumcircle of ABC and its Simson line A′B′C ′ is perpendicular to radius OD. When
D moves on the circle its Simson line rotates in the opposite direction with twice as smaller velocity,
therefore there exists exactly three points with such property (these points form a regular triangle).
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Ω

Fig. 10.4b

But several of these points can coincide with the vertices of the given triangle. Since the Simson line
of the vertex A coincide with the corresponding altitude, that happens when the radius OA is parallel to
BC, i.e. |∠B−∠C| = 90◦. This is true for two vertices iff the angles of the given triangle are equal to 30◦,
30◦ and 120◦. From this the answer follows.
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10.5. (A. Zaslavsky) The altitude from one vertex of a triangle, the bisector from the another one and
the median from the remaining vertex were drawn, the common points of these three lines were marked,
and after this everything was erased except three marked points. Restore the triangle. (For every two erased
segments, it is known which of the three points was their intersection point.)

A

BC

X

Y

Z

A′

B′ C ′

X ′

Y ′

Z ′
`1

`2

Fig. 10.5

Solution. Let X, Y , Z be the marked points. Then we have to find points A, B, C on lines XY , Y Z,
ZX respectively such that XY , Y Z, ZX be the altitude, the bisector and the median of triangle ABC.
From an arbitrary point B′ draw a ray l1 perpendicular to XY , and such ray l2, that the bisector of the
angle formed by these rays be parallel to Y Z. Take an arbitrary point A′ on l2 and draw through the
midpoint of A′B′ the line parallel to ZX meeting l1 at point C ′. Triangle A′B′C ′ is homothetic to the
desired one. Constructing the points corresponding to X, Y , Z, find the center and the coefficient of the
homothety.

10.6. (E.H. Garsia) The incircle of a non-isosceles triangle ABC touches AB at point C ′. The circle
with diameter BC ′ meets the incircle and the bisector of angle B again at points A1 and A2 respectively.
The circle with diameter AC ′ meets the incircle and the bisector of angle A again at points B1 and B2

respectively. Prove that lines AB, A1B1, A2B2 concur.

A B

C

C ′

I

J
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Fig. 10.6

Solution. Let I be the center of the incircle, and J be its point opposite to C ′. Then A1 and B1 are the
common points of AJ , BJ with the incircle (because ∠AB1C

′ = ∠C ′B1J = ∠BA1C
′ = ∠C ′A1J = 90◦).

From right-angled triangles AC ′I, BC ′I, AC ′J and BC ′J with altitudes C ′B2, C ′A2, C ′B1 and C ′A1 we
obtain

AB2

B2I
· IA2

A2B
=

AC ′2

C ′I2
· IC ′2

C ′B2
=

AC ′2

C ′J2
· JC ′2

C ′B2
=

AB1

B1J
· JA1

A1B
,

i.e. by Menelaos theorem A1B1 and A2B2 meet AB at the same point.

10.7. (S. Shosman, O. Ogievetsky) Prove that the smallest dihedral angle between faces of an arbitrary
tetrahedron is not greater than the dihedral angle between faces of a regular tetrahedron.
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Solution. Let the greatest area of the faces of the tetrahedron is equal to 1. Let S1, S2, S3 be the
areas of the remaining faces, and α1, α2, α3 be the angles between these faces and the greatest face. Then
S1 cos α1 + S2 cos α2 + S3 cos α3 = 1 and, therefore, one of angles α1, α2, α3 is not greater than arccos 1

3
.

10.8. (N. Beluhov) Given is a cyclic quadrilateral ABCD. The point La lies in the interior of 4BCD
and is such that its distances to the sides of this triangle are proportional to the lengths of corresponding
sides. The points Lb, Lc, and Ld are defined analogously. Given that the quadrilateral LaLbLcLd is cyclic,
prove that the quadrilateral ABCD has two parallel sides.

Solution. If ABCD is an isosceles trapezoid, then so is LaLbLcLd.
Suppose, then, that LaLbLcLd is cyclic and that ABCD has no parallel sides. Let P = AB ∩ CD,

Q = AD ∩ BC, and R = AC ∩ BD. Furthermore, let the tangents at A and B to the circumcircle of
ABCD meet in S, those at B and C meet in T , those at C and D – in U , and those at D and A – in V .
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D
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T

U

V

P

Q

R

LaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLaLa

Lc

Fig. 10.8

It is well-known that R = SU ∩ TV and that La = BU ∩ DT and Lc = BV ∩ DS. By Pappus’s
theorem for the hexagon BUSDTV , we see that R lies on LaLc. Similarly, R lies on LbLd and, therefore,
R = LaLc ∩ LbLd. Analogously, P = LaLb ∩ LcLd and Q = LaLd ∩ LbLc.

Since the vertices of 4PQR are the intersections of the diagonals and opposite sides of ABCD, the
circumcircle k of ABCD has the property that the polar of any vertex of 4PQR with respect to k is the
side opposite to that vertex. Analogously, the circumcircle s of LaLbLcLd has the same property. Given
4PQR, however, there is exactly one such circle. It follows that k ≡ s, and this is a contradiction because
LaLbLcLd lies in the interior of ABCD.
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