XI Geometrical Olympiad in honour of I.F.Sharygin
 Final round. Grade 8. First day. Solutions

Ratmino, 2015, July 30.

1. (V. Yasinsky) In trapezoid $A B C D$ angles A and B are right, $A B=A D$, $C D=B C+A D, B C<A D$. Prove that $\angle A D C=2 \angle A B E$, where E is the midpoint of segment D.
First solution. Choose a point K on the side $C D$ so that $C K=C B$; let M be the common point of $A B$ and the perpendicular from K to $C D$. The right triangles $B C M$ and $K C M$ are congruent by hypothenuse and leg, so $B M=M K$, and $C M$ bisects the angle C. By the problem condition we get $K D=A D$, and in a similar way we obtain that $A M=M K$ and that $D M$ bisects the angle D. Thus $A M=A B / 2=A E$, i.e., the triangles $A B E$ and $A D M$ are congruent. Therefore, $\angle A D C=2 \angle A D M=2 \angle A B E$ (Fig. 8.1).

Fig. 8.1
Second solution. Choose a point F on the extension of $D A$ beyond point A so that $A F=B C$. Then we have $D F=D C$. Let M be the common point of $A B$ and $C F$, i.e., M is the midpoint of $A B$. The right triangles $A B E$ and $A D M$ are congruent, and $D M$ is a median in the triangle $C D F$, so it bisects the angle $C D A$; therefore, $\angle C D A / 2=\angle A B E$.
2. (A. Blinkov) A circle passing through A, B and the orthocenter of triangle $A B C$ meets sides $A C, B C$ at their inner points. Prove that $60^{\circ}<\angle C<90^{\circ}$.
First solution. Let A^{\prime} and B^{\prime} be the second meeting points of the circle with $B C$ and $A C$, respectively. Then $\angle C=\left(\smile A B-\smile A^{\prime} B^{\prime}\right) / 2$. Since the angle between the altitudes is equal to $180^{\circ}-\angle C=\smile A B / 2$, we obtain that $180^{\circ}-\angle C>\angle C$ and thus $\angle C<90^{\circ}$.
On the other hand, the angle C is greater than the angle between the tangents to the circle at A and B; the latter angle is equal to $180^{\circ}-2 \angle C$. Therefore, $\angle C>60^{\circ}$.
Second solution. If the angle C is not acute, then H either lies outside the triangle or coincides with C. In both cases the intersection points do not belong to the interiors of the sides.

Since $\angle A A^{\prime} B=\angle B B^{\prime} A=\angle A H B=180^{\circ}-\angle C$, we have $\angle A A^{\prime} C=$ $\angle B B^{\prime} C=\angle C$; but these angles are greater than the angles A and B as they are external angles of triangles $A A^{\prime} B$ and $B B^{\prime} A$. Therefore, C is the largest angle of the triangle $A B C$, i.e. $\angle C>60^{\circ}$.

Fig 8.2
3. (M. Yevdokimov) In triangle $A B C$ we have $A B=B C, \angle B=20^{\circ}$. Point M on $A C$ is such that $A M: M C=1: 2$, point H is the projection of C to $B M$. Find angle $A H B$.
Answer. 100°.
First solution. Construct a point D such that the quadrilateral $A B C D$ is a rhombus. Let O be the center of the rhombus. Then the line $B M$ divides the median $A O$ of the triangle $A B D$ in ratio 2:1. Thus this line is also a median, i.e., it passes through the midpoint K of the segment $A D$. Since the points O and H lie on the circle with diameter $B C$, we have $\angle K H O=$ $\angle B C O=\angle K A O$. Therefore, the quadrilateral $A H O K$ is cyclic, so $\angle A H K=$ $\angle A O K=80^{\circ}$, and hence $\angle A H B=100^{\circ}$ (Fig. 8.3).

Fig. 8.3
Second solution. As in the previous solution, we notice that the quadrilateral $B C O H$ is cyclic. So, $M H \cdot M B=M O \cdot M C=M A^{2}$. Thus the circle $A H B$ is tangent to the line $A C$, which yields $\angle A H B=180^{\circ}-\angle B A C=100^{\circ}$.
4. (N. Belukhov) Prove that an arbitrary convex quadrilateral can be divided into five polygons having symmetry axes.
Solution. Let $A B C D$ be a given quadrilateral. If $A B+C D=A D+B C$, then the quadrilateral is circumscribed. The radii of its incircle joining the
center with the points of tangency with the sides divide the quadrilateral into four symmetric quadrilaterals. It remains to divide one of them into two isosceles triangles.
Now assume that $A B+C D>A D+B C$. Construct a circle with center O_{1} tangent to sides $A B, A D$, and $C D$ at points P_{1}, Q_{1}, and R_{1} respectively, and also construct a circle with center O_{2} tangent to the sides $A B, B C$, and $C D$ at points P_{2}, Q_{2}, R_{2} respectively (Fig. 8.4). The radii passing to these six points divide $A B C D$ into the quadrilaterals $A P_{1} O_{1} Q_{1}, B P_{2} O_{2} Q_{2}$, $C Q_{2} O_{2} R_{2}, D Q_{1} O_{1} R_{1}$ and the hexagon $P_{1} P_{2} O_{2} R_{2} R_{1} O_{1}$. Their symmetry axes are respectively the bisectors of the angles A, B, C, D, and the bisector of the angle between the lines $A B$ and $C D$.

Fig. 8.4

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 8. Second day

Ratmino, 2015, July 31.
5. (E. Bakayev, A. Zaslavsky) Two equal hard triangles are given. One of their angles is equal to α (these angles are marked). Dispose these triangles on the plane in such a way that the angle formed by some three vertices would be equal to $\alpha / 2$. (No instruments are allowed, even a pencil.)
Solution. The required configuration is shown in Fig 8.5. The triangle $B C C^{\prime}$ is isosceles, with $B C=C^{\prime} C$ and $\angle C^{\prime} C B=180^{\circ}-\alpha$. Thus $\angle C^{\prime} B C=\alpha / 2$.

Fig. 8.5
6. (D. Prokopenko) Lines b and c passing through vertices B and C of triangle $A B C$ are perpendicular to sideline $B C$. The perpendicular bisectors to $A C$ and $A B$ meet b and c at points P and Q respectively. Prove that line $P Q$ is perpendicular to median $A M$ of triangle $A B C$.
First solution. Let M be the midpoint of $B C$. It suffices to prove that $A P^{2}-A Q^{2}=M P^{2}-M Q^{2}$.
Since the points P and Q lie on the perpendicular bisectors to $A C$ and $B C$, respectively, we have $A P^{2}-A Q^{2}=C P^{2}-B Q^{2}=\left(B C^{2}+B P^{2}\right)-\left(B C^{2}+\right.$ $\left.C Q^{2}\right)=\left(M B^{2}+B P^{2}\right)-\left(M C^{2}+C Q^{2}\right)=M P^{2}-M Q^{2}$.

Fig. 8.6

Second solution. Construct a circle centered at P and passing through A. It meets $B C$ at C and also at a point K symmetric to C in B. Similarly, the circle centered at Q and passing through A meets $B C$ at B and at a point L symmetric to B in C. The powers of M with respect to these circles are equal, so the radical axis of these circles is $A M$, and it is perpendicular to the line of centers $P Q$ (Fig. 8.6).
7. (M. Kungozhin) Point M on side $A B$ of quadrilateral $A B C D$ is such that quadrilaterals $A M C D$ and $B M D C$ are circumscribed around circles centered at O_{1} and O_{2} respectively. Line $O_{1} O_{2}$ cuts an isosceles triangle with vertex M from angle $C M D$. Prove that $A B C D$ is a cyclic quadrilateral.
Solution. If $A B \| C D$ then the incircles of $A M C D$ and $B M D C$ have equal radii; now the problem conditions imply that the whole picture is symmetric about the perpendicular from M to $O_{1} O_{2}$, and hence $A B C D$ is an iosceles trapezoid (or a rectangle).
Now suppose that the lines $A B$ and $C D$ meet at a point K; we may assume that A lies between K and B. The points O_{1} and O_{2} lie on the bisector of the angle $B K C$. By the problem condition, this angle bisector forms equal angles with the lines $C M$ and $D M$; this yields $\angle D M K=\angle K C M$ (Fig. 8.7). Since O_{1} and O_{2} are the incenter of $\triangle K M C$ and an excenter of $\triangle K D M$, respectively, we have $\angle D O_{2} K=\angle D M K / 2=\angle K C M / 2=\angle D C O_{1}$, so the quadrilateral $C D O_{1} O_{2}$ is cyclic. Next, the same points are an excenter of $\triangle A K D$ and the incenter of $\triangle K B C$, respectively, so $\angle K A D=2 \angle K O_{1} D=$ $2 \angle D C O_{2}=\angle K C B$; this implies the desired cyclicity of the quadrilateral $A B C D$.

Fig. 8.7
8. (A. Antropov, A. Yakubov) Points C_{1}, B_{1} on sides $A B, A C$ respectively of triangle $A B C$ are such that $B B_{1} \perp C C_{1}$. Point X lying inside the triangle
is such that $\angle X B C=\angle B_{1} B A, \angle X C B=\angle C_{1} C A$. Prove that $\angle B_{1} X C_{1}=$ $90^{\circ}-\angle A$.

First solution. Let X_{1} be the projection of X onto $B C$, and let O be the meeting point of the lines $B B_{1}$ and $C C_{1}$. Then the triangle $C_{1} B O$ is similar to the triangle $X B X_{1}$ by two angles, thus $\frac{B C_{1}}{B X}=\frac{B O}{B X_{1}}$. This implies that the triangles $B C_{1} X$ and $B O X_{1}$ are also similar by two proportional sides and the angle between them. Therefore, $\angle B X C_{1}=\angle B X_{1} O$. Similarly we obtain $\angle B_{1} X C=\angle O X_{1} C$ (Fig. 8.8). Hence $\angle B X C_{1}+\angle C X B_{1}=\angle B X_{1} O+$ $\angle O X_{1} C=180^{\circ}$. Therefore, $\angle C_{1} X B_{1}=180^{\circ}-\angle B X C=\angle X B C+\angle X C B=$ $\angle A B B_{1}+\angle A C C_{1}=\angle B O C-\angle B A C=90^{\circ}-\angle A$, as required.

Fig. 8.8
Second solution. We start with two lemmas.
Lemma 1. If the diagonals of a quadrilateral are perpendicular, then the projections of their meeting point to the sidelines are concyclic.
Proof. Let the diagonals of a quadrilateral $A B C D$ meet at O, and let K, L, M, and N be the projections of O onto $A B, B C, C D$, and $D A$, respectively. Since the quadrilaterals $O K B L, O L C M, O M D N$, and $O N A K$ are cyclic, we have $\angle L K N+\angle L M N=\angle O B C+\angle O C B+\angle O A D+\angle O D A=180^{\circ}$.
Lemma 2. If the projections of a point P onto the sidelines of $A B C D$ are concyclic, then the reflections of the lines $A P, B P, C P$, and $D P$ about the bisectors of the corresponding angles are concurrent.
Proof. Since the projections of P to the sidelines are concyclic, the points K, L, M, and N which are symmetric to P about the lines $A B, B C, C D$, and $D A$, respectively, are also concyclic. Since $A K=A P=A N$, the perpendicular bisector to the segment $K N$ coincides with the bisectrix of the angle $K A N$; this bisectrix is symmetric to $A P$ about the bisectrix of the angle $B A D$. Therefore, all of these four lines pass through the circumcenter of $K L M N$.

To solve the problem, apply these two lemmas to the quadrilateral $B C C_{1} B_{1}$. Since the lines $B X$ and $C X$ are symmetric to $B B_{1}$ and $C C_{1}$ about the bisectors of the angles B and C respectively, the lines $B_{1} X$ and $C_{1} X$ are also symmetric to $B_{1} B$ and $C_{1} C$ about the bisectors of the angles $C B_{1} C_{1}$ and $B C_{1} B_{1}$ respectively. This yields that $\angle B_{1} X C_{1}=180^{\circ}-\angle X B_{1} C_{1}-$ $\angle X C_{1} B_{1}=180^{\circ}-\angle C B_{1} O-\angle B C_{1} O=180^{\circ}-\left(90^{\circ}+\angle A\right)=90^{\circ}-\angle A$.

XI Geometrical Olympiad in honour of I.F.Sharygin Final round. Grade 9. First day

Ratmino, 2015, July 30.

1. (D. Mukhin) Circles α and β pass through point C. The tangent to α at this point meets β at point B, and the tangent to β at C meets α at point A so that A and B are distinct from C and angle $A C B$ is obtuse. Line $A B$ meets α and β for the second time at points N and M respectively. Prove that $2 M N<A B$.
Solution. Since $A C$ and $B C$ are tangent to β and α, respectively, we have $\angle A C M=\angle C B A$ and $\angle B C N=\angle C A B$. Since the angle $A C B$ is obtuse, the points A, M, N, B are arranged on $A B$ in this order. Using the tangency again, we get $A M=A C^{2} / A B$ and $B N=B C^{2} / A B$. Using the AM-QM inequality and the triangle inequality in this order, we obtain $2(A M+B N) \geqslant$ $\frac{(A C+B C)^{2}}{A B}>A B$; this is equivalent to the desired inequality.

Fig. 9.1
2. (A. Zaslavsky) A convex quadrilateral is given. Using a compass and a ruler construct a point such that its projections to the sidelines of this quadrilateral are the vertices of a parallelogram.
Solution. All the angles in the solution are directed.
Let K, L, M, and N be the projections of the point P onto $A B, B C, C D$, and $D A$, respectively. The condition $K L \| M N$ is equivalent to $\angle B K L+$ $\angle M N D=\angle B A D$. Since $P K B L$ and $P M D B$ are cyclic quadrilaterals, we have $\angle B K L=\angle B P L$ and $\angle M N D=\angle M P D$. Consequently, the condition $K L \| M N$ is equivalent to

$$
\angle B P D=(\angle B P L+\angle M P D)+\angle L P M=\angle B A D+\left(180^{\circ}-\angle D C B\right) .
$$

Thus, we can construct a circle passing through B and D and containing P (Fig. 9.2).
Similarly, the condition $K N \| L M$ is equivalent to $\angle C P A=180^{\circ}+\angle C B A-$ $\angle A D C$, so we can construct a circle through A and C containing P. One of the meeting points of the two constructed circles is the Miquel point of the
lines $A B, B C, C D$, and $D A$ (its projections are collinear by the Simson theorem). The other point is the desired one.

Fig. 9.2
3. (M. Kharitonov, A. Polyansky) Let 100 discs lie on the plane in such a way that each two of them have a common point. Prove that there exists a point lying inside at least 15 of these discs.

Solution. Let K be the smallest of the given discs; we may suppose that its radius is equal to 1 . Let O be the center of K, and let $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ be a regular hexagon with center O and side length $\sqrt{3}$. We will prove that each of given discs contains one of points O, A_{1}, \ldots, A_{6}; by pigeonhole principle, this implies the problem statement.
Let O^{\prime} be the center of some disc K^{\prime}. If O^{\prime} lies in K, then K^{\prime} contains O, because the radius of K^{\prime} is at least 1 . So we assume henceforth that $O O^{\prime}>1$. The angle between the ray $O O^{\prime}$ and one of the rays $O A_{i}$ (say, with $O A_{1}$) is at most 30°. Thus we have

$$
O^{\prime} A_{1}^{2}=O^{\prime} O^{2}+O A_{1}^{2}-2 O^{\prime} O \cdot O A_{1} \cos \angle O^{\prime} O A_{1} \leqslant O^{\prime} O^{2}+3-3 O^{\prime} O
$$

If $1<O^{\prime} O \leq 2$, then $O^{\prime} A_{1} \leq 1$, so K^{\prime} contains A_{1}. Otherwise, we have $O^{\prime} O>2$, and this implies that $O^{\prime} A_{1}<O^{\prime} O-1$. On the other hand, the radius of K^{\prime} is not less than $O O^{\prime}-1$ because this disc intersects K, so in this case K^{\prime} also contains A_{1}.
4. (R. Krutovsky, A. Yakubov) A fixed triangle $A B C$ is given. Point P moves on its circumcircle so that segments $B C$ and $A P$ intersect. Line $A P$ divides triangle $B P C$ into two triangles with incenters I_{1} and I_{2}. Line $I_{1} I_{2}$ meets $B C$ at point Z. Prove that all lines $Z P$ pass through a fixed point.
First solution. It is known that the centers of two arbitrary circles, together with their internal and external homothety centers, form a harmonic quadruple. For two given circles centered at I_{1} and I_{2}, the external homothety
center is Z, and the internal one lies on the line $A P$, since $B Z$ and $A P$ are an external and an internal common tangents, respectively. Thus, the projection mapping centered at P acting from the line $I_{1} I_{2}$ to the circumcircle Ω of $\triangle A B C$ maps the internal homothety center to A, and the points I_{1} and I_{2} to the midpoints of the arcs $A B$ and $A C$, respectively. These three points are fixed, so the image of Z is also fixed, and all lines $P Q$ pass through this fixed point on Ω.

Fig. 9.4
Second solution. Let U be the common point of $A P$ and $B C$. We prove that the cross-ratio $(B C ; Z U)$ is independent of P; again, after projecting the line $B C$ from P to the circumcircle Ω of $\triangle A B C$ this will yield that the line $P Z$ meets Ω at a fixed point.
Let I, I_{1}, and I_{2} be the incenters of the triangles $P B C, P B U$, and $P C U$ respectively. Applying Menelaus' theorem to the triangle BIC we obtain

$$
\frac{B Z}{C Z}=\frac{B I_{1}}{I_{1} I} \cdot \frac{I I_{2}}{I_{2} C} .
$$

Since $P I, P I_{1}$, and $P I_{2}$ are the bisectors of the angles $B P C, B P U$, and $C P U$ respectively, we have $\angle B P I_{1}=\angle I P I_{2}=\angle C / 2$ and $\angle I_{1} P I=\angle I_{2} P C=$ $\angle B / 2$. Hence, applying the sine law to the triangles $B P I_{1}, I_{1} P I, I P I_{2}$, and $I_{2} P C$ we obtain

$$
\frac{B I_{1}}{I_{1} I}=\frac{B P}{I P} \cdot \frac{\sin (\angle C / 2)}{\sin (\angle B / 2)} \quad \text { and } \quad \frac{I I_{2}}{I_{2} C}=\frac{I P}{C P} \cdot \frac{\sin (\angle C / 2)}{\sin (\angle B / 2)} .
$$

Similarly, applying the sine law to the triangles $B P C, A B U$, and $A C U$, we get

$$
\frac{B P}{C P}=\frac{\sin \angle B C P}{\sin \angle C B P}=\frac{\sin \angle B A U}{\sin \angle C A U}=\frac{B U}{A B} \cdot \frac{A C}{C U} .
$$

Multiplying the four obtained equalities, we conclude that

$$
(B C ; Z U)=\frac{\sin ^{2}(\angle C / 2)}{\sin ^{2}(\angle B / 2)} \cdot \frac{A C}{A B}=\frac{\operatorname{tg}(\angle C / 2)}{\operatorname{tg}(\angle B / 2)}
$$

Remark. The value of $(B C ; Z U)$ obtained above may be implemented to show that the line $P Z$ meets the circumcircle at the point collinear with the incenter of $\triangle A B C$ and the midpoint of the arc $C A B$. One may also see that there exists a circle tangent to the circumcircle at that point and also tangent to the segments $A B$ and $A C$.

XI Geometrical Olympiad in honour of I.F.Sharygin
 Final round. Grade 9. Second day

Ratmino, 2015, July 31.
5. (D. Svhetsov) Let $B M$ be a median of nonisosceles right-angled triangle $A B C$ $\left(\angle B=90^{\circ}\right)$, and H_{a}, H_{c} be the orthocenters of triangles $A B M, C B M$ respectively. Prove that lines $A H_{c}$ and $C H_{a}$ meet on the medial line of triangle $A B C$.
Solution. Let A^{\prime} and C^{\prime} be the midpoints of the legs $A B$ and $B C$, respectively. Since the triangles $A M B$ and $B M C$ are isosceles, their altitudes from M pass through A^{\prime} and C^{\prime}, respectively. Then $A A^{\prime} \perp B C \perp H_{c} C^{\prime}$, $A H_{a} \perp B M \perp H_{c} C$, and $A^{\prime} H_{a} \perp A B \perp C^{\prime} C$. This shows that the corresponding sides of the triangles $A A^{\prime} H_{a}$ and $H_{c} C^{\prime} C$ are parallel, i.e., these triangles are homothetic. Therefore, the lines $A H_{c}, H_{a} C$, and $A^{\prime} C^{\prime}$ concur at the homothety center, and it lies on the midline $A^{\prime} C^{\prime}$ (Fig. 9.5).

Fig. 9.5
6. (A. Zaslavsky) The diagonals of convex quadrilateral $A B C D$ are perpendicular. Points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are the circumcenters of triangles $A B D, B C A$, $C D B, D A C$ respectively. Prove that lines $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ concur.
Solution. We start with two lemmas.
Lemma 1. If the diagonals of a quadrilateral are perpendicular, then the projections of their meeting point to the sidelines are concyclic.

Proof. Let the diagonals of a quadrilateral $A B C D$ meet at O, and let K, L, M, and N be the projections of O onto $A B, B C, C D$, and $D A$, respectively. Since the quadrilaterals $O K B L, O L C M, O M D N$, and $O N A K$ are cyclic, we have $\angle L K N+\angle L M N=\angle O B C+\angle O C B+\angle O A D+\angle O D A=180^{\circ}$.
Lemma 2. If the projections of a point P onto the sidelines of $A B C D$ are concyclic, then the reflections of the lines $A P, B P, C P$, and $D P$ about the bisectors of the corresponding angles are concurrent.

Proof. Since the projections of P to the sidelines are concyclic, the points K, L, M, and N which are symmetric to P about the lines $A B, B C, C D$, and $D A$, respectively, are also concyclic. Since $A K=A P=A N$, the perpendicular bisector to the segment $K N$ coincides with the bisectrix of the angle $K A N$; this bisectrix is symmetric to $A P$ about the bisectrix of the angle $B A D$. Therefore, all of these four lines pass through the circumcenter of $K L M N$.
Now we pass to the solution. Note that the line $A C$ contains the altitude of the triangle $D A B$, so the line $A A^{\prime}$ is its reflection about the bisector of the angle A; similar arguments work for the other vertices of $A B C D$. Thus the four lines under consideration are concurrent.
Remark. One may show that, if three of the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$, and $D D^{\prime}$ are concurrent, then either the quadrilateral $A B C D$ is cyclic or its diagonals are perpendicular. In both cases the fourth line also passes through the concurrency point.
7. (D. Krekov) Let $A B C$ be an acute-angled, nonisosceles triangle. Altitudes $A A^{\prime}$ and $B B^{\prime}$ meet at point H, and the medians of triangle $A H B$ meet at point M. Line $C M$ bisects segment $A^{\prime} B^{\prime}$. Find angle C.
Answer. 45°.
Solution. Let C_{0} be the midpoint of $A B$, and let H^{\prime} be the point symmetric to H in C_{0}; it is well known that H^{\prime} is the point opposite to C on the circumcircle of $\triangle A B C$. The medians $C C_{0}$ and $C M$ of similar triangles $A B C$ and $A^{\prime} B^{\prime} C$ are symmetric about the bisector of the angle C. An altitude CH and the diameter CH^{\prime} of the circumcircle are also symmetric about this bisector. Therefore, $\angle H^{\prime} C C_{0}=\angle M C H$, i.e., $C M$ is a symmedian in the triangle $C H H^{\prime}$ (Fig. 9.7). Thus we have $\left(C H^{\prime} / C H\right)^{2}=H^{\prime} M / M H=2$; now, from $C H=C H^{\prime} \cos \angle C$ we obtain $\angle C=45^{\circ}$.

Fig. 9.7
8. (I.Frolov) A perpendicular bisector to side $B C$ of triangle $A B C$ meets lines $A B$ and $A C$ at points A_{B} and A_{C} respectively. Let O_{a} be the circumcenter of triangle $A A_{B} A_{C}$. Points O_{b} and O_{c} are defined similarly. Prove that the circumcircle of triangle $O_{a} O_{b} O_{c}$ touches the circumcircle of the original triangle.
Solution. Let A^{\prime}, B^{\prime}, and C^{\prime} be the pairwise meeting points of the tangents to the circumcircle of $\triangle A B C$ at its vertices (so, A^{\prime} is the meeting point of the tangents at B and C, and so on).
Consider an arbitrary triangle formed by the lines $C A, C B$, and any line ℓ perpendicular to $A B$. All such triangles are pairwise homothetic at C. Moreover, if the line ℓ moves with a constant speed, then the circumcenter of the triangle also moves with a constant speed along some line passing through C.
Consider two specific positions of ℓ, when it passes through B and A. For the first position, the circumcenter of the obtained triangle $C C_{A}^{\prime} B$ is A^{\prime}, since $C A^{\prime}=B A^{\prime}$ and $\angle C A^{\prime} B=180^{\circ}-2 \angle A=2 \angle C C_{A}^{\prime} B$ (Fig. 9.8). Similarly, the circumcenter for the second position in B^{\prime}. Hence, the circumcenter O_{c} of the triangle $C C_{A} C_{B}$ is the midpoint of $A^{\prime} B^{\prime}$. (Different cases of mutual positions of the points can be treated analogously.)

Fig. 9.8
In a similar way we obtain that O_{a} and O_{b} are the midpoints of $B^{\prime} C^{\prime}$ and $C^{\prime} A^{\prime}$ respectively. Therefore, the circumcircle of $\triangle O_{a} O_{b} O_{c}$ is the Euler circle of the triangle $A^{\prime} B^{\prime} C^{\prime}$, and the circumcircle of $\triangle A B C$ is either its incircle (if $\triangle A B C$ is acute-angled) or its excircle (otherwise). In any case, the Feuerbach theorem shows that these two circles are tangent to each other.

XI Geometrical Olympiad in honour of I.F.Sharygin
 Final round. Grade 10. First day

Ratmino, 2015, July 30.

1. (A. Karlyuchenko) Let K be an arbitrary point on side $B C$ of triangle $A B C$, and $K N$ be a bisector of triangle $A K C$. Lines $B N$ and $A K$ meet at point F, and lines $C F$ and $A B$ meet at point D. Prove that $K D$ is a bisector of triangle $A K B$.
Solution. By the bisector property, we have $\frac{C N}{N A}=\frac{C K}{K A}$. Now by Ceva's theorem we obtain

$$
\frac{B D}{D A}=\frac{B K}{K C} \cdot \frac{C N}{N A}=\frac{B K}{K A},
$$

which means exactly that $K D$ is a bisector of the angle $A K B$.

Fig. 10.1
2. (A. Shapovalov) Prove that an arbitrary triangle with area 1 can be covered by an isosceles triangle with area less than $\sqrt{2}$.
Solution. Let $A B C$ be a given triangle with $A B \geq A C \geq B C$. Let $C H$ be its altitude. Let A^{\prime} be the reflection of A in H, and let B^{\prime} be the reflection of B about the bisector of angle A. Then each of the isosceles triangles $A C A^{\prime}$ and $A B B^{\prime}$ covers $\triangle A B C$, and we have $S_{A C A^{\prime}} / S_{A B C}=A A^{\prime} / A B=2 A H / A B$ and $S_{A B B^{\prime}} / S_{A B C}=A B^{\prime} / A C=A B / A C$. The product of these two ratios is $2 A H / A C<2$; therefore, one of them is less than $\sqrt{2}$.

3. (A. Akopyan) Let A_{1}, B_{1} and C_{1} be the midpoints of sides $B C, C A$ and $A B$ of triangle $A B C$. Points B_{2} and C_{2} are the midpoints of segments $B A_{1}$ and $C A_{1}$ respectively. Point B_{3} is symmetric to C_{1} wrt B, and C_{3} is symmetric
to B_{1} wrt C. Prove that one of common points of circles $B B_{2} B_{3}$ and $C C_{2} C_{3}$ lies on the circumcircle of triangle $A B C$.
First solution. Choose a point X on the circumcircle Ω of $\triangle A B C$ so that $\angle X A_{1} C=\angle C A_{1} A$. Then X is symmetric to the second common point of $A A_{1}$ and Ω about the perpendicular bisector of $B C$; hence, $A_{1} X \cdot A_{1} A=$ $A_{1} B \cdot A_{1} C=A_{1} C^{2}$. This implies that the triangles $X A_{1} C$ and $C A_{1} A$ are similar.
Let T be the midpoint of $A A_{1}$. Then $X C_{2}$ and $C T$ are corresponding medians in similar triangles, thus $\angle C X C_{2}=\angle A C T$ (Fig. 10.3.1). On the other hand, the quadrilateral $C T C_{2} C_{3}$ is a parallelogram, i.e., $\angle C C_{3} C_{2}=\angle A C T=$ $\angle C X C_{2}$. Hence, X lies on the circumcircle of $\triangle C C_{2} C_{3}$.
Similarly, X lies on the circumcircle of $\triangle B B_{2} B_{3}$. Therefore, X is a desired point.

Fig. 10.3.1

Fig. 10.3.2

Second solution. Let us construct a triangle $Y B_{2} C_{2}$ similar to $\triangle A B C$ and separated from that by the line $B C$ (Fig, 10.3.2). Since $B_{2} C_{2}=B C / 2$, the points B_{3}, Y, and C_{3} are equidistant from the line $B C$ (this common distance is half the distance of A from $B C$). Moreover, we have $Y B_{2}=A B / 2=B B_{3}$ and $Y C_{2}=A C / 2=C C_{3}$. Altogether this means that $B B_{2} Y B_{3}$ and $C C_{2} Y C_{3}$ are isosceles trapezoids, and hence Y is one of the common points of the circles $B B_{2} B_{3}$ and $C C_{2} C_{3}$.
Since the powers of A_{1} with respect to these circles are equal, their second common point lies on $A_{1} Y$. Let the ray $A_{1} Y$ meet the circumcircle of $\triangle A B C$ at X. Since $A A_{1}$ and $Y A_{1}$ are corresponding medians in similar triangles $A B C$ and $Y B_{2} C_{2}$, we obtain $\angle X A_{1} C=\angle C A_{1} A$; thus, as in the previous solution, we have $A_{1} X \cdot A_{1} A=A_{1} B \cdot A_{1} C$. Therefore, $A_{1} X \cdot A_{1} Y=A_{1} X$. $A_{1} A / 2=A_{1} B^{2} / 2=A_{1} B \cdot A_{1} B_{2}$, and so X is the second common point of the two circles under consideration.
4. (I. Yakovlev) Let $A A_{1}, B B_{1}, C C_{1}$ be the altitudes of an acute-angled, nonisosceles triangle $A B C$, and A_{2}, B_{2}, C_{2} be the touching points of sides $B C$, $C A, A B$ with the correspondent excircles. It is known that line $B_{1} C_{1}$ touches the incircle of $A B C$. Prove that A_{1} lies on the circumcircle of $A_{2} B_{2} C_{2}$.
First solution. Let H, I, and O be the orthocenter, the incenter, and the circumcenter of $\triangle A B C$, respectively. Let Ω, ω, and r denote its circumcircle, incircle, and inradius, respectively. Let A^{\prime}, B^{\prime}, and C^{\prime} be the tangency points of ω with the sides $B C, A C$, and $A B$, and let I_{A}, I_{B}, and I_{C} be the excenters corresponding to these sides, respectively. Finally, let M_{A} be the midpoint of $B C$.

The problem condition says that the quadrilateral $B C_{1} B_{1} C$ is circumscribed around ω. This quadrilateral is also inscribed into a circle with diameter $B C$. It is known that in such a quadrilateral, the circumcenter, the incenter, and the meeting point of the diagonals are collinear (e.g., this follows from the fact that the polar line of the meeting point of the diagonals with respect to both the incircle and the circumcircle is the line passing through the meeting points of the extensions of opposite sides). Thus the points H, I, and M_{A} are collinear.

Let A_{3} be the point opposite to A^{\prime} on ω. It is known that the points A, A_{3}, and A_{2} are collinear. Furthermore, the point M_{A} is the midpoint of $A_{2} A^{\prime}$. Therefore, $I M_{A}$ is a midline in the triangle $A_{2} A^{\prime} A_{3}$. this yields that $H I \|$ $A A_{3}$, i.e., the quadrilateral $A A_{3} I H$ is a parallelogram, and so $r=A_{3} I=$ $A H=2 O M_{A}$ (this quadrilateral is non-degenerate, otherwise $\triangle A B C$ would be isosceles). Therefore, $M_{A} O$ is a midline in the triangle $I A^{\prime} A_{2}$, since it passes through the midpoint of $A^{\prime} A_{2}$ and is parallel to $I A^{\prime}$; moreover, since $M_{A} O=r / 2=I A^{\prime} / 2$, we conclude that O is the midpoint of $I A_{2}$.

Fig. 10.4.1
Thus, the point A_{2} is symmetric to I in O. Finally, the lines $I_{C} C_{2}$ and $I C^{\prime}$, as well as the lines $I_{B} B_{2}$ and $I B^{\prime}$, are symmetric in O; therefore, both these lines
pass through A_{2}. Hence $\angle A_{2} B_{2} B=\angle A_{2} C_{2} C=90^{\circ}=\angle A A_{1} B$. This means that all five points A, A_{2}, B_{2}, C_{2}, and A_{1} lie on a circle with diameter $A A_{2}$.
Second solution. We present a different proof of the fact that $O M_{A}=r / 2$; after that, one may finish the solution as shown above. The notation from the previous solution is still in force. Additionally, we denote by T the tangency point of the excircle ω_{A} with $A B$.
By the problem condition, the circle ω_{A} is an excircle of $\triangle A B_{1} C_{1}$. Therefore, the similarity transform mapping $\triangle A B_{1} C_{1}$ to $\triangle A B C$ sends ω to ω_{A}. Thus, $A B^{\prime} / A T=\cos \angle A$. This means that $T B^{\prime} \perp A C$, and hence $T B^{\prime}$ passes through I. Since $\angle T I C^{\prime}=\angle A=\angle C O M_{A}$, the right triangles $T C^{\prime} I$ and $C O M_{A}$ are similar (Fig. 10.4.2). Moreover, we have $T C^{\prime}=T B+B C^{\prime}=$ $B A_{2}+C A_{2}=B C=2 C M_{A}$, so the similarity ratio of these two triangles is 2 ; thus $O M_{A}=I C^{\prime} / 2=r / 2$.

Fig. 10.4.2
Remark 1. In any triangle $A B C$, the circle $A_{2} B_{2} C_{2}$ is a pedal circle of a point K symmetric to I in O. This circle is also a pedal circle of a point K^{\prime} isogonally conjugate to K. Thus, A_{1} lies on the circle $A_{2} B_{2} C_{2}$ if and only if K^{\prime} lies on $A A_{1}$, i.e., if either K lies on $A O$ or $K^{\prime}=A$. In the first case the triangle has to be isosceles, and in the second case we have $A_{2}=K$.
Remark 2. One can also show that under the problem conditions, the orthocenter lies on the line $B^{\prime} C^{\prime}$ (Fig. 10.4.2), and the excircle tangent to the side $B C$ is orthogonal to the circumcircle.

XI Geometrical Olympiad in honour of I.F.Sharygin
 Final round. Grade 10. Second day

Ratmino, 2015, July 31.
5. (D. Shvetsov) Let $B M$ be a median of right-angled nonisosceles triangle $A B C$ $\left(\angle B=90^{\circ}\right)$, and H_{a}, H_{c} be the orthocenters of triangles $A B M, C B M$ respectively. Lines $A H_{c}$ and $C H_{a}$ meet at point K. Prove that $\angle M B K=90^{\circ}$.
Solution. Since the lines $A H_{a}$ and $C H_{c}$ are perpendicular to $B M$, the quadrilateral $A H_{c} C H_{a}$ is a trapezoid, and K is the common point of its lateral sidelines. Moreover, since the triangles $A B M$ and $C B M$ are isosceles, we have $H_{a} A=H_{a} B$ and $H_{c} C=H_{c} B$. Therefore, $K C / K H_{a}=C H_{c} / A H_{a}=$ $B H_{c} / B H_{a}$, i.e. $K B \| C H_{c} \perp B M$ (Fig. 10.5).

Fig. 10.5
6. (A. Sokolov) Let H and O be the orthocenter and the circumcenter of triangle $A B C$. The circumcircle of triangle $A O H$ meets the perpendicular bisector to $B C$ at point A_{1}. Points B_{1} and C_{1} are defined similarly. Prove that lines $A A_{1}, B B_{1}$ and $C C_{1}$ concur.
Solution. We will make use of the following fact.
Lemma. Assume that a line ℓ passes through the orthocenter of a triangle; then the reflections of ℓ about the sidelines are concurrent.
Proof. Let H be the orthocenter of a given triangle $A B C$. Then the points H_{a}, H_{b}, and H_{c} symmetric to H about $B C, C A$, and $A B$, respectively, lie on the circumcircle of the triangle. Furthermore, the angle subtended by the $\operatorname{arc} H_{a} H_{b}$ is equal to $2 \angle C$, i.e., it is equal to the reflections of ℓ about $B C$ and $C A$. Thus these reflections meet on the circumcircle. Clearly, the third line also passes through the same point. This finishes the proof of the lemma. Back to the problem. Consider the triangle $A^{\prime} B^{\prime} C^{\prime}$ formed by the reflections of O about the sides of the triangle $A B C$. Its vertices are the circumcenters of the triangles $H B C, H C A$, and $H A B$; thus its sides are the perpendicular
bisectors of $H A, H B$, and $H C$. Therefore, the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are parallel to those of $\triangle A B C$, and O is its orthocenter (Fig. 10.6).
Now, the sides $A H$ and $A_{1} O$ of the cyclic quadrilateral $A H O A_{1}$ are parallel, so the lines $A A_{1}$ and $O H$ are symmetric about the perpendicular bisector of $A H$, i.e., about $B^{\prime} C^{\prime}$. The similar statement holds for the lines $B B_{1}$ and $C C_{1}$. Hence these lines are concurrent due to the lemma applied to the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Fig. 10.6
7. (I.I.Bogdanov) Let $S A B C D$ be an inscribed pyramid, and $A A_{1}, B B_{1}, C C_{1}$, $D D_{1}$ be the perpendiculars from A, B, C, D to lines $S C, S D, S A, S B$ respectively. Points $S, A_{1}, B_{1}, C_{1}, D_{1}$ are distinct and lie on a sphere. Prove that points A_{1}, B_{1}, C_{1} and D_{1} are complanar.
Solution. Since $A A_{1}$ and $C C_{1}$ are altitudes of the triangle $S A C$, the points A, C, A_{1}, and C_{1} are concyclic, i.e., $S C \cdot S A_{1}=S A \cdot S C_{1}$. Therefore, there exists an inversion centered at S interchanging A_{1} with C and C_{1} with A. Since $S B \cdot S D_{1}=S D \cdot S B_{1}$, this inversion maps B_{1} and D_{1} to some points B_{2} and D_{2} on the rays $S D$ and $S B$, respectively, such that $B_{2} D_{2} \| B D$.
On the other hand, the points A, C, B_{2}, and D_{2} must be coplanar (as they are the images of the points lying on a sphere passing through S). However, if the line $B_{2} D_{2}$ does not lie in the plane $A B C D$, then the lines $B_{2} D_{2}$ and $A C$ are skew. Thus, we are left with the only option that $B_{2}=D$ and $D_{2}=B$. Therefore, the points A_{1}, B_{1}, C_{1}, and D_{1} lie in a plane which is the image of the sphere $S A B C D$.
8. (M. Artemyev) Does there exist a rectangle which can be divided into a
regular hexagon with sidelength 1 and several equal right-angled triangles with legs 1 and $\sqrt{3}$?

Answer. No.

Solution. Suppose that such partition of some rectangle exists. Note that the area of each triangle in the partition is $S=\sqrt{3} / 2$, and the area of the hexagon is equal to $3 S$. Each side of the rectangle is partitioned into segments with lengths 1,2 , and $\sqrt{3}$, i.e., the lengths of these sides have the form $a+b \sqrt{3}$ and $c+d \sqrt{3}$ with nonnegative integers a, b, c, and d. Thus, the area of the rectangle equals

$$
(a+b \sqrt{3})(c+d \sqrt{3})=(a c+3 b d)+(a d+b c) \sqrt{3} .
$$

On the other hand, this area is a multiple of S, therefore $a c+3 b d=0$, i.e., $a c=0$ and $b d=0$.
This yields that one of these sides (say, vertical) has an integer length, while the other one (say, horizontal) has a length which is a multiple of $\sqrt{3}$. Thus the area of the rectangle is a multiple of $2 S$. Since the area of the hexagon equals $3 S$, the number of the triangles in the partition is odd. Now we prove that this is impossible.
Each (non-extendable) segment in the partition is covered by the segments of integer lengths and sides of length $\sqrt{3}$ on both sides. Thus the number of the segments of length $\sqrt{3}$ adjoining the segment is even. Next, none of the vertical sides of the rectangle adjoins such segments, while the horizontal sides of the rectangle are partitioned into such segments, and hence they also adjoin an even number of segments of length $\sqrt{3}$ in total. Thus the total number of sides of length $\sqrt{3}$ is even; but any triangle in the partition contains exactly one such side. This is a contradiction.

