
XI Geometrical Olympiad in honour of I.F.Sharygin
Final round. Grade 8. First day. Solutions

Ratmino, 2015, July 30.

1. (V. Yasinsky) In trapezoid ABCD angles A and B are right, AB = AD,
CD = BC + AD, BC < AD. Prove that ∠ADC = 2∠ABE, where E is the
midpoint of segment D.

First solution. Choose a point K on the side CD so that CK = CB; let
M be the common point of AB and the perpendicular from K to CD. The
right triangles BCM and KCM are congruent by hypothenuse and leg, so
BM = MK, and CM bisects the angle C. By the problem condition we get
KD = AD, and in a similar way we obtain that AM = MK and that DM
bisects the angle D. Thus AM = AB/2 = AE, i.e., the triangles ABE and
ADM are congruent. Therefore, ∠ADC = 2∠ADM = 2∠ABE (Fig. 8.1).
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Fig. 8.1

Second solution. Choose a point F on the extension of DA beyond point
A so that AF = BC. Then we have DF = DC. Let M be the common point
of AB and CF , i.e., M is the midpoint of AB. The right triangles ABE
and ADM are congruent, and DM is a median in the triangle CDF , so it
bisects the angle CDA; therefore, ∠CDA/2 = ∠ABE.

2. (A. Blinkov) A circle passing through A, B and the orthocenter of triangle
ABC meets sides AC, BC at their inner points. Prove that 60◦ < ∠C < 90◦.

First solution. Let A′ and B′ be the second meeting points of the circle
with BC and AC, respectively. Then ∠C = (^AB −^A′B′)/2. Since the
angle between the altitudes is equal to 180◦−∠C = ^AB/2, we obtain that
180◦ − ∠C > ∠C and thus ∠C < 90◦.

On the other hand, the angle C is greater than the angle between the tangents
to the circle at A and B; the latter angle is equal to 180◦ − 2∠C. Therefore,
∠C > 60◦.

Second solution. If the angle C is not acute, then H either lies outside
the triangle or coincides with C. In both cases the intersection points do not
belong to the interiors of the sides.
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Since ∠AA′B = ∠BB′A = ∠AHB = 180◦ − ∠C, we have ∠AA′C =
∠BB′C = ∠C; but these angles are greater than the angles A and B as
they are external angles of triangles AA′B and BB′A. Therefore, C is the
largest angle of the triangle ABC, i.e. ∠C > 60◦.
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Fig 8.2

3. (M. Yevdokimov) In triangle ABC we have AB = BC, ∠B = 20◦. Point M
on AC is such that AM : MC = 1 : 2, point H is the projection of C to BM .
Find angle AHB.
Answer. 100◦.
First solution. Construct a point D such that the quadrilateral ABCD is
a rhombus. Let O be the center of the rhombus. Then the line BM divides
the median AO of the triangle ABD in ratio 2 : 1. Thus this line is also
a median, i.e., it passes through the midpoint K of the segment AD. Since
the points O and H lie on the circle with diameter BC, we have ∠KHO =
∠BCO = ∠KAO. Therefore, the quadrilateral AHOK is cyclic, so ∠AHK =
∠AOK = 80◦, and hence ∠AHB = 100◦ (Fig. 8.3).
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Second solution. As in the previous solution, we notice that the quadrilate-
ral BCOH is cyclic. So,MH ·MB = MO·MC = MA2. Thus the circle AHB
is tangent to the line AC, which yields ∠AHB = 180◦ − ∠BAC = 100◦.

4. (N. Belukhov) Prove that an arbitrary convex quadrilateral can be divided
into five polygons having symmetry axes.
Solution. Let ABCD be a given quadrilateral. If AB + CD = AD + BC,
then the quadrilateral is circumscribed. The radii of its incircle joining the
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center with the points of tangency with the sides divide the quadrilateral
into four symmetric quadrilaterals. It remains to divide one of them into two
isosceles triangles.

Now assume that AB + CD > AD +BC. Construct a circle with center O1

tangent to sides AB, AD, and CD at points P1, Q1, and R1 respectively,
and also construct a circle with center O2 tangent to the sides AB, BC,
and CD at points P2, Q2, R2 respectively (Fig. 8.4). The radii passing to
these six points divide ABCD into the quadrilaterals AP1O1Q1, BP2O2Q2,
CQ2O2R2, DQ1O1R1 and the hexagon P1P2O2R2R1O1. Their symmetry
axes are respectively the bisectors of the angles A, B, C, D, and the bisector
of the angle between the lines AB and CD.
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XI Geometrical Olympiad in honour of I.F.Sharygin
Final round. Grade 8. Second day

Ratmino, 2015, July 31.

5. (E. Bakayev, A. Zaslavsky) Two equal hard triangles are given. One of their
angles is equal to α (these angles are marked). Dispose these triangles on the
plane in such a way that the angle formed by some three vertices would be
equal to α/2. (No instruments are allowed, even a pencil.)
Solution. The required configuration is shown in Fig 8.5. The triangle BCC ′
is isosceles, with BC = C ′C and ∠C ′CB = 180◦ − α. Thus ∠C ′BC = α/2.
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Fig. 8.5

6. (D. Prokopenko) Lines b and c passing through vertices B and C of triangle
ABC are perpendicular to sideline BC. The perpendicular bisectors to AC
and AB meet b and c at points P and Q respectively. Prove that line PQ is
perpendicular to median AM of triangle ABC.
First solution. Let M be the midpoint of BC. It suffices to prove that
AP 2 −AQ2 = MP 2 −MQ2.
Since the points P and Q lie on the perpendicular bisectors to AC and BC,
respectively, we have AP 2 −AQ2 = CP 2 −BQ2 = (BC2 +BP 2)− (BC2 +
CQ2) = (MB2 +BP 2)− (MC2 + CQ2) = MP 2 −MQ2.
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Second solution. Construct a circle centered at P and passing through A.
It meets BC at C and also at a point K symmetric to C in B. Similarly, the
circle centered at Q and passing through A meets BC at B and at a point L
symmetric to B in C. The powers ofM with respect to these circles are equal,
so the radical axis of these circles is AM , and it is perpendicular to the line
of centers PQ (Fig. 8.6).

7. (M. Kungozhin) Point M on side AB of quadrilateral ABCD is such that
quadrilaterals AMCD and BMDC are circumscribed around circles centered
at O1 and O2 respectively. Line O1O2 cuts an isosceles triangle with vertex
M from angle CMD. Prove that ABCD is a cyclic quadrilateral.

Solution. If AB ‖ CD then the incircles of AMCD and BMDC have equal
radii; now the problem conditions imply that the whole picture is symmetric
about the perpendicular from M to O1O2, and hence ABCD is an iosceles
trapezoid (or a rectangle).

Now suppose that the lines AB and CD meet at a point K; we may assume
that A lies between K and B. The points O1 and O2 lie on the bisector of
the angle BKC. By the problem condition, this angle bisector forms equal
angles with the lines CM and DM ; this yields ∠DMK = ∠KCM (Fig. 8.7).
Since O1 and O2 are the incenter of 4KMC and an excenter of 4KDM ,
respectively, we have ∠DO2K = ∠DMK/2 = ∠KCM/2 = ∠DCO1, so
the quadrilateral CDO1O2 is cyclic. Next, the same points are an excenter
of4AKD and the incenter of4KBC, respectively, so ∠KAD = 2∠KO1D =
2∠DCO2 = ∠KCB; this implies the desired cyclicity of the quadrilater-
al ABCD.
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8. (A. Antropov, A. Yakubov) Points C1, B1 on sides AB, AC respectively of
triangle ABC are such that BB1 ⊥ CC1. Point X lying inside the triangle
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is such that ∠XBC = ∠B1BA, ∠XCB = ∠C1CA. Prove that ∠B1XC1 =
90◦ − ∠A.

First solution. Let X1 be the projection of X onto BC, and let O be the
meeting point of the lines BB1 and CC1. Then the triangle C1BO is similar
to the triangle XBX1 by two angles, thus BC1

BX = BO
BX1

. This implies that
the triangles BC1X and BOX1 are also similar by two proportional sides
and the angle between them. Therefore, ∠BXC1 = ∠BX1O. Similarly we
obtain ∠B1XC = ∠OX1C (Fig. 8.8). Hence ∠BXC1+∠CXB1 = ∠BX1O+
∠OX1C = 180◦. Therefore, ∠C1XB1 = 180◦−∠BXC = ∠XBC+∠XCB =
∠ABB1 + ∠ACC1 = ∠BOC − ∠BAC = 90◦ − ∠A, as required.
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Fig. 8.8

Second solution. We start with two lemmas.

Lemma 1. If the diagonals of a quadrilateral are perpendicular, then the
projections of their meeting point to the sidelines are concyclic.

Proof. Let the diagonals of a quadrilateral ABCD meet at O, and let K, L,
M , and N be the projections of O onto AB, BC, CD, and DA, respectively.
Since the quadrilaterals OKBL, OLCM , OMDN , and ONAK are cyclic,
we have ∠LKN + ∠LMN = ∠OBC + ∠OCB + ∠OAD + ∠ODA = 180◦.

Lemma 2. If the projections of a point P onto the sidelines of ABCD are
concyclic, then the reflections of the lines AP , BP , CP , and DP about the
bisectors of the corresponding angles are concurrent.

Proof. Since the projections of P to the sidelines are concyclic, the points
K, L, M , and N which are symmetric to P about the lines AB, BC, CD,
and DA, respectively, are also concyclic. Since AK = AP = AN , the per-
pendicular bisector to the segment KN coincides with the bisectrix of the
angle KAN ; this bisectrix is symmetric to AP about the bisectrix of the
angle BAD. Therefore, all of these four lines pass through the circumcenter
of KLMN .
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To solve the problem, apply these two lemmas to the quadrilateral BCC1B1.
Since the lines BX and CX are symmetric to BB1 and CC1 about the
bisectors of the angles B and C respectively, the lines B1X and C1X are
also symmetric to B1B and C1C about the bisectors of the angles CB1C1

and BC1B1 respectively. This yields that ∠B1XC1 = 180◦ − ∠XB1C1 −
∠XC1B1 = 180◦ − ∠CB1O − ∠BC1O = 180◦ − (90◦ + ∠A) = 90◦ − ∠A.
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XI Geometrical Olympiad in honour of I.F.Sharygin
Final round. Grade 9. First day

Ratmino, 2015, July 30.

1. (D. Mukhin) Circles α and β pass through point C. The tangent to α at this
point meets β at point B, and the tangent to β at C meets α at point A so
that A and B are distinct from C and angle ACB is obtuse. Line AB meets
α and β for the second time at points N and M respectively. Prove that
2MN < AB.

Solution. Since AC and BC are tangent to β and α, respectively, we have
∠ACM = ∠CBA and ∠BCN = ∠CAB. Since the angle ACB is obtuse, the
points A, M , N , B are arranged on AB in this order. Using the tangency
again, we get AM = AC2/AB and BN = BC2/AB. Using the AM–QM
inequality and the triangle inequality in this order, we obtain 2(AM+BN) >
(AC+BC)2

AB > AB; this is equivalent to the desired inequality.
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Fig. 9.1

2. (A. Zaslavsky) A convex quadrilateral is given. Using a compass and a ruler
construct a point such that its projections to the sidelines of this quadrilateral
are the vertices of a parallelogram.

Solution. All the angles in the solution are directed.

Let K, L, M , and N be the projections of the point P onto AB, BC, CD,
and DA, respectively. The condition KL ‖ MN is equivalent to ∠BKL +
∠MND = ∠BAD. Since PKBL and PMDB are cyclic quadrilaterals, we
have ∠BKL = ∠BPL and ∠MND = ∠MPD. Consequently, the condition
KL ‖MN is equivalent to

∠BPD = (∠BPL+ ∠MPD) + ∠LPM = ∠BAD + (180◦ − ∠DCB).

Thus, we can construct a circle passing through B and D and containing P
(Fig. 9.2).

Similarly, the condition KN ‖ LM is equivalent to ∠CPA = 180◦+∠CBA−
∠ADC, so we can construct a circle through A and C containing P . One of
the meeting points of the two constructed circles is the Miquel point of the
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lines AB, BC, CD, and DA (its projections are collinear by the Simson
theorem). The other point is the desired one.
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Fig. 9.2

3. (M. Kharitonov, A. Polyansky) Let 100 discs lie on the plane in such a way
that each two of them have a common point. Prove that there exists a point
lying inside at least 15 of these discs.

Solution. Let K be the smallest of the given discs; we may suppose that its
radius is equal to 1. Let O be the center of K, and let A1A2A3A4A5A6 be a
regular hexagon with center O and side length

√
3. We will prove that each

of given discs contains one of points O,A1, . . . , A6; by pigeonhole principle,
this implies the problem statement.

Let O′ be the center of some disc K ′. If O′ lies in K, then K ′ contains O,
because the radius of K ′ is at least 1. So we assume henceforth that OO′ > 1.

The angle between the ray OO′ and one of the rays OAi (say, with OA1) is
at most 30◦. Thus we have

O′A2
1 = O′O2 +OA2

1 − 2O′O ·OA1 cos∠O′OA1 6 O′O2 + 3− 3O′O.

If 1 < O′O ≤ 2, then O′A1 ≤ 1, so K ′ contains A1. Otherwise, we have
O′O > 2, and this implies that O′A1 < O′O − 1. On the other hand, the
radius of K ′ is not less than OO′−1 because this disc intersects K, so in this
case K ′ also contains A1.

4. (R. Krutovsky, A. Yakubov) A fixed triangle ABC is given. Point P moves
on its circumcircle so that segments BC and AP intersect. Line AP divides
triangle BPC into two triangles with incenters I1 and I2. Line I1I2 meets
BC at point Z. Prove that all lines ZP pass through a fixed point.

First solution. It is known that the centers of two arbitrary circles, together
with their internal and external homothety centers, form a harmonic quad-
ruple. For two given circles centered at I1 and I2, the external homothety
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center is Z, and the internal one lies on the line AP , since BZ and AP
are an external and an internal common tangents, respectively. Thus, the
projection mapping centered at P acting from the line I1I2 to the circumcir-
cle Ω of 4ABC maps the internal homothety center to A, and the points I1
and I2 to the midpoints of the arcs AB and AC, respectively. These three
points are fixed, so the image of Z is also fixed, and all lines PQ pass through
this fixed point on Ω.
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Fig. 9.4

Second solution. Let U be the common point of AP and BC. We prove
that the cross-ratio (BC;ZU) is independent of P ; again, after projecting
the line BC from P to the circumcircle Ω of 4ABC this will yield that the
line PZ meets Ω at a fixed point.
Let I, I1, and I2 be the incenters of the triangles PBC, PBU , and PCU
respectively. Applying Menelaus’ theorem to the triangle BIC we obtain

BZ

CZ
=
BI1
I1I
· II2
I2C

.

Since PI, PI1, and PI2 are the bisectors of the angles BPC, BPU , and CPU
respectively, we have ∠BPI1 = ∠IPI2 = ∠C/2 and ∠I1PI = ∠I2PC =
∠B/2. Hence, applying the sine law to the triangles BPI1, I1PI, IPI2,
and I2PC we obtain

BI1
I1I

=
BP

IP
· sin(∠C/2)

sin(∠B/2)
and

II2
I2C

=
IP

CP
· sin(∠C/2)

sin(∠B/2)
.

Similarly, applying the sine law to the triangles BPC, ABU , and ACU , we
get

BP

CP
=

sin∠BCP
sin∠CBP

=
sin∠BAU
sin∠CAU

=
BU

AB
· AC
CU

.

Multiplying the four obtained equalities, we conclude that

(BC;ZU) =
sin2(∠C/2)

sin2(∠B/2)
· AC
AB

=
tg(∠C/2)

tg(∠B/2)
.
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Remark. The value of (BC;ZU) obtained above may be implemented to
show that the line PZ meets the circumcircle at the point collinear with the
incenter of 4ABC and the midpoint of the arc CAB. One may also see that
there exists a circle tangent to the circumcircle at that point and also tangent
to the segments AB and AC.
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XI Geometrical Olympiad in honour of I.F.Sharygin
Final round. Grade 9. Second day

Ratmino, 2015, July 31.

5. (D. Svhetsov) Let BM be a median of nonisosceles right-angled triangle ABC
(∠B = 90◦), and Ha, Hc be the orthocenters of triangles ABM , CBM re-
spectively. Prove that lines AHc and CHa meet on the medial line of triangle
ABC.

Solution. Let A′ and C ′ be the midpoints of the legs AB and BC, res-
pectively. Since the triangles AMB and BMC are isosceles, their altitudes
from M pass through A′ and C ′, respectively. Then AA′ ⊥ BC ⊥ HcC

′,
AHa ⊥ BM ⊥ HcC, and A′Ha ⊥ AB ⊥ C ′C. This shows that the cor-
responding sides of the triangles AA′Ha and HcC

′C are parallel, i.e., these
triangles are homothetic. Therefore, the lines AHc, HaC, and A′C ′ concur at
the homothety center, and it lies on the midline A′C ′ (Fig. 9.5).
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Fig. 9.5

6. (A. Zaslavsky) The diagonals of convex quadrilateral ABCD are perpendi-
cular. Points A′, B′, C ′, D′ are the circumcenters of triangles ABD, BCA,
CDB, DAC respectively. Prove that lines AA′, BB′, CC ′, DD′ concur.

Solution. We start with two lemmas.

Lemma 1. If the diagonals of a quadrilateral are perpendicular, then the
projections of their meeting point to the sidelines are concyclic.

Proof. Let the diagonals of a quadrilateral ABCD meet at O, and let K, L,
M , and N be the projections of O onto AB, BC, CD, and DA, respectively.
Since the quadrilaterals OKBL, OLCM , OMDN , and ONAK are cyclic,
we have ∠LKN + ∠LMN = ∠OBC + ∠OCB + ∠OAD + ∠ODA = 180◦.

Lemma 2. If the projections of a point P onto the sidelines of ABCD are
concyclic, then the reflections of the lines AP , BP , CP , and DP about the
bisectors of the corresponding angles are concurrent.
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Proof. Since the projections of P to the sidelines are concyclic, the points
K, L, M , and N which are symmetric to P about the lines AB, BC, CD,
and DA, respectively, are also concyclic. Since AK = AP = AN , the per-
pendicular bisector to the segment KN coincides with the bisectrix of the
angle KAN ; this bisectrix is symmetric to AP about the bisectrix of the
angle BAD. Therefore, all of these four lines pass through the circumcenter
of KLMN .

Now we pass to the solution. Note that the line AC contains the altitude of
the triangle DAB, so the line AA′ is its reflection about the bisector of the
angle A; similar arguments work for the other vertices of ABCD. Thus the
four lines under consideration are concurrent.

Remark. One may show that, if three of the lines AA′, BB′, CC ′, and DD′
are concurrent, then either the quadrilateral ABCD is cyclic or its diago-
nals are perpendicular. In both cases the fourth line also passes through the
concurrency point.

7. (D. Krekov) Let ABC be an acute-angled, nonisosceles triangle. Altitudes
AA′ and BB′ meet at point H, and the medians of triangle AHB meet at
point M . Line CM bisects segment A′B′. Find angle C.

Answer. 45◦.

Solution. Let C0 be the midpoint of AB, and let H ′ be the point symmetric
to H in C0; it is well known that H ′ is the point opposite to C on the
circumcircle of 4ABC. The medians CC0 and CM of similar triangles ABC
and A′B′C are symmetric about the bisector of the angle C. An altitude
CH and the diameter CH ′ of the circumcircle are also symmetric about this
bisector. Therefore, ∠H ′CC0 = ∠MCH, i.e., CM is a symmedian in the
triangle CHH ′ (Fig. 9.7). Thus we have (CH ′/CH)2 = H ′M/MH = 2; now,
from CH = CH ′ cos∠C we obtain ∠C = 45◦.
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Fig. 9.7
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8. (I.Frolov) A perpendicular bisector to side BC of triangle ABC meets lines
AB and AC at points AB and AC respectively. Let Oa be the circumcen-
ter of triangle AABAC . Points Ob and Oc are defined similarly. Prove that
the circumcircle of triangle OaObOc touches the circumcircle of the original
triangle.

Solution. Let A′, B′, and C ′ be the pairwise meeting points of the tangents
to the circumcircle of 4ABC at its vertices (so, A′ is the meeting point of
the tangents at B and C, and so on).

Consider an arbitrary triangle formed by the lines CA, CB, and any line `
perpendicular to AB. All such triangles are pairwise homothetic at C. More-
over, if the line ` moves with a constant speed, then the circumcenter of the
triangle also moves with a constant speed along some line passing through C.

Consider two specific positions of `, when it passes through B and A. For the
first position, the circumcenter of the obtained triangle CC ′AB is A′, since
CA′ = BA′ and ∠CA′B = 180◦ − 2∠A = 2∠CC ′AB (Fig. 9.8). Similarly, the
circumcenter for the second position in B′. Hence, the circumcenter Oc of the
triangle CCACB is the midpoint of A′B′. (Different cases of mutual positions
of the points can be treated analogously.)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C ′
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A′

B′

CA

CB

Oa

Ob

C ′A

Fig. 9.8

In a similar way we obtain that Oa and Ob are the midpoints of B′C ′ and
C ′A′ respectively. Therefore, the circumcircle of 4OaObOc is the Euler circle
of the triangle A′B′C ′, and the circumcircle of 4ABC is either its incircle (if
4ABC is acute-angled) or its excircle (otherwise). In any case, the Feuerbach
theorem shows that these two circles are tangent to each other.
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XI Geometrical Olympiad in honour of I.F.Sharygin
Final round. Grade 10. First day

Ratmino, 2015, July 30.

1. (A. Karlyuchenko) Let K be an arbitrary point on side BC of triangle ABC,
and KN be a bisector of triangle AKC. Lines BN and AK meet at point
F , and lines CF and AB meet at point D. Prove that KD is a bisector of
triangle AKB.

Solution. By the bisector property, we have CN
NA = CK

KA . Now by Ceva’s
theorem we obtain

BD

DA
=
BK

KC
· CN
NA

=
BK

KA
,

which means exactly that KD is a bisector of the angle AKB.
A

B C

D
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

N

K

Fig. 10.1

2. (A. Shapovalov) Prove that an arbitrary triangle with area 1 can be covered
by an isosceles triangle with area less than

√
2.

Solution. Let ABC be a given triangle with AB ≥ AC ≥ BC. Let CH be
its altitude. Let A′ be the reflection of A in H, and let B′ be the reflection
of B about the bisector of angle A. Then each of the isosceles triangles ACA′
and ABB′ covers 4ABC, and we have SACA′/SABC = AA′/AB = 2AH/AB
and SABB′/SABC = AB′/AC = AB/AC. The product of these two ratios is
2AH/AC < 2; therefore, one of them is less than

√
2.

A B

C

A′

B′

H

Fig. 10.2

3. (A. Akopyan) Let A1, B1 and C1 be the midpoints of sides BC, CA and AB
of triangle ABC. Points B2 and C2 are the midpoints of segments BA1 and
CA1 respectively. Point B3 is symmetric to C1 wrt B, and C3 is symmetric
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to B1 wrt C. Prove that one of common points of circles BB2B3 and CC2C3

lies on the circumcircle of triangle ABC.
First solution. Choose a point X on the circumcircle Ω of 4ABC so that
∠XA1C = ∠CA1A. Then X is symmetric to the second common point of
AA1 and Ω about the perpendicular bisector of BC; hence, A1X · A1A =
A1B · A1C = A1C

2. This implies that the triangles XA1C and CA1A are
similar.
Let T be the midpoint of AA1. Then XC2 and CT are corresponding medi-
ans in similar triangles, thus ∠CXC2 = ∠ACT (Fig. 10.3.1). On the other
hand, the quadrilateral CTC2C3 is a parallelogram, i.e., ∠CC3C2 = ∠ACT =
∠CXC2. Hence, X lies on the circumcircle of 4CC2C3.
Similarly, X lies on the circumcircle of 4BB2B3. Therefore, X is a desired
point.
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B2 C2A1
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Fig. 10.3.1 Fig. 10.3.2

Second solution. Let us construct a triangle Y B2C2 similar to 4ABC and
separated from that by the line BC (Fig, 10.3.2). Since B2C2 = BC/2, the
points B3, Y , and C3 are equidistant from the line BC (this common distance
is half the distance of A from BC). Moreover, we have Y B2 = AB/2 = BB3

and Y C2 = AC/2 = CC3. Altogether this means that BB2Y B3 and CC2Y C3

are isosceles trapezoids, and hence Y is one of the common points of the
circles BB2B3 and CC2C3.
Since the powers of A1 with respect to these circles are equal, their second
common point lies on A1Y . Let the ray A1Y meet the circumcircle of 4ABC
at X. Since AA1 and Y A1 are corresponding medians in similar triangles
ABC and Y B2C2, we obtain ∠XA1C = ∠CA1A; thus, as in the previous
solution, we have A1X · A1A = A1B · A1C. Therefore, A1X · A1Y = A1X ·
A1A/2 = A1B

2/2 = A1B · A1B2, and so X is the second common point of
the two circles under consideration.
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4. (I. Yakovlev) Let AA1, BB1, CC1 be the altitudes of an acute-angled, non-
isosceles triangle ABC, and A2, B2, C2 be the touching points of sides BC,
CA, AB with the correspondent excircles. It is known that line B1C1 touches
the incircle of ABC. Prove that A1 lies on the circumcircle of A2B2C2.

First solution. Let H, I, and O be the orthocenter, the incenter, and the
circumcenter of 4ABC, respectively. Let Ω, ω, and r denote its circumcircle,
incircle, and inradius, respectively. Let A′, B′, and C ′ be the tangency points
of ω with the sides BC, AC, and AB, and let IA, IB , and IC be the excenters
corresponding to these sides, respectively. Finally, let MA be the midpoint
of BC.

The problem condition says that the quadrilateral BC1B1C is circumscribed
around ω. This quadrilateral is also inscribed into a circle with diameter BC.
It is known that in such a quadrilateral, the circumcenter, the incenter, and
the meeting point of the diagonals are collinear (e.g., this follows from the
fact that the polar line of the meeting point of the diagonals with respect to
both the incircle and the circumcircle is the line passing through the meeting
points of the extensions of opposite sides). Thus the points H, I, andMA are
collinear.

Let A3 be the point opposite to A′ on ω. It is known that the points A, A3,
and A2 are collinear. Furthermore, the point MA is the midpoint of A2A

′.
Therefore, IMA is a midline in the triangle A2A

′A3. this yields that HI ‖
AA3, i.e., the quadrilateral AA3IH is a parallelogram, and so r = A3I =
AH = 2OMA (this quadrilateral is non-degenerate, otherwise 4ABC would
be isosceles). Therefore, MAO is a midline in the triangle IA′A2, since it
passes through the midpoint of A′A2 and is parallel to IA′; moreover, since
MAO = r/2 = IA′/2, we conclude that O is the midpoint of IA2.
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Thus, the point A2 is symmetric to I in O. Finally, the lines ICC2 and IC ′, as
well as the lines IBB2 and IB′, are symmetric in O; therefore, both these lines
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pass through A2. Hence ∠A2B2B = ∠A2C2C = 90◦ = ∠AA1B. This means
that all five points A, A2, B2, C2, and A1 lie on a circle with diameter AA2.

Second solution. We present a different proof of the fact that OMA = r/2;
after that, one may finish the solution as shown above. The notation from the
previous solution is still in force. Additionally, we denote by T the tangency
point of the excircle ωA with AB.

By the problem condition, the circle ωA is an excircle of 4AB1C1. Therefore,
the similarity transform mapping 4AB1C1 to 4ABC sends ω to ωA. Thus,
AB′/AT = cos∠A. This means that TB′ ⊥ AC, and hence TB′ passes
through I. Since ∠TIC ′ = ∠A = ∠COMA, the right triangles TC ′I and
COMA are similar (Fig. 10.4.2). Moreover, we have TC ′ = TB + BC ′ =
BA2 + CA2 = BC = 2CMA, so the similarity ratio of these two triangles
is 2; thus OMA = IC ′/2 = r/2.
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Remark 1. In any triangle ABC, the circle A2B2C2 is a pedal circle of a
point K symmetric to I in O. This circle is also a pedal circle of a point K ′
isogonally conjugate to K. Thus, A1 lies on the circle A2B2C2 if and only
if K ′ lies on AA1, i.e., if either K lies on AO or K ′ = A. In the first case the
triangle has to be isosceles, and in the second case we have A2 = K.

Remark 2. One can also show that under the problem conditions, the or-
thocenter lies on the line B′C ′ (Fig. 10.4.2), and the excircle tangent to the
side BC is orthogonal to the circumcircle.
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XI Geometrical Olympiad in honour of I.F.Sharygin
Final round. Grade 10. Second day

Ratmino, 2015, July 31.

5. (D. Shvetsov) Let BM be a median of right-angled nonisosceles triangle ABC
(∠B = 90◦), and Ha, Hc be the orthocenters of triangles ABM , CBM re-
spectively. Lines AHc and CHa meet at point K. Prove that ∠MBK = 90◦.

Solution. Since the lines AHa and CHc are perpendicular to BM , the
quadrilateral AHcCHa is a trapezoid, and K is the common point of its
lateral sidelines. Moreover, since the triangles ABM and CBM are isosceles,
we have HaA = HaB and HcC = HcB. Therefore, KC/KHa = CHc/AHa =
BHc/BHa, i.e. KB ‖ CHc ⊥ BM (Fig. 10.5).
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Fig. 10.5

6. (A. Sokolov) Let H and O be the orthocenter and the circumcenter of triangle
ABC. The circumcircle of triangle AOH meets the perpendicular bisector to
BC at point A1. Points B1 and C1 are defined similarly. Prove that lines
AA1, BB1 and CC1 concur.

Solution. We will make use of the following fact.

Lemma. Assume that a line ` passes through the orthocenter of a triangle;
then the reflections of ` about the sidelines are concurrent.

Proof. Let H be the orthocenter of a given triangle ABC. Then the points
Ha, Hb, and Hc symmetric to H about BC, CA, and AB, respectively, lie
on the circumcircle of the triangle. Furthermore, the angle subtended by the
arc HaHb is equal to 2∠C, i.e., it is equal to the reflections of ` about BC
and CA. Thus these reflections meet on the circumcircle. Clearly, the third
line also passes through the same point. This finishes the proof of the lemma.

Back to the problem. Consider the triangle A′B′C ′ formed by the reflections
of O about the sides of the triangle ABC. Its vertices are the circumcenters
of the triangles HBC, HCA, and HAB; thus its sides are the perpendicular
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bisectors of HA, HB, and HC. Therefore, the sides of 4A′B′C ′ are parallel
to those of 4ABC, and O is its orthocenter (Fig. 10.6).

Now, the sides AH and A1O of the cyclic quadrilateral AHOA1 are paral-
lel, so the lines AA1 and OH are symmetric about the perpendicular bisec-
tor of AH, i.e., about B′C ′. The similar statement holds for the lines BB1

and CC1. Hence these lines are concurrent due to the lemma applied to the
triangle A′B′C ′.

A

B
C

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

A1

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

C1

A′

B′C ′

Fig. 10.6

7. (I.I.Bogdanov) Let SABCD be an inscribed pyramid, and AA1, BB1, CC1,
DD1 be the perpendiculars from A, B, C, D to lines SC, SD, SA, SB
respectively. Points S, A1, B1, C1, D1 are distinct and lie on a sphere. Prove
that points A1, B1, C1 and D1 are complanar.

Solution. Since AA1 and CC1 are altitudes of the triangle SAC, the points
A, C, A1, and C1 are concyclic, i.e., SC · SA1 = SA · SC1. Therefore, there
exists an inversion centered at S interchanging A1 with C and C1 with A.
Since SB ·SD1 = SD ·SB1, this inversion maps B1 and D1 to some points B2

and D2 on the rays SD and SB, respectively, such that B2D2 ‖ BD.

On the other hand, the points A, C, B2, and D2 must be coplanar (as they
are the images of the points lying on a sphere passing through S). However, if
the line B2D2 does not lie in the plane ABCD, then the lines B2D2 and AC
are skew. Thus, we are left with the only option that B2 = D and D2 = B.
Therefore, the points A1, B1, C1, and D1 lie in a plane which is the image of
the sphere SABCD.

8. (M. Artemyev) Does there exist a rectangle which can be divided into a
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regular hexagon with sidelength 1 and several equal right-angled triangles
with legs 1 and

√
3?

Answer. No.

Solution. Suppose that such partition of some rectangle exists. Note that
the area of each triangle in the partition is S =

√
3/2, and the area of the

hexagon is equal to 3S. Each side of the rectangle is partitioned into segments
with lengths 1, 2, and

√
3, i.e., the lengths of these sides have the form a+b

√
3

and c + d
√

3 with nonnegative integers a, b, c, and d. Thus, the area of the
rectangle equals

(a+ b
√

3)(c+ d
√

3) = (ac+ 3bd) + (ad+ bc)
√

3.

On the other hand, this area is a multiple of S, therefore ac + 3bd = 0, i.e.,
ac = 0 and bd = 0.

This yields that one of these sides (say, vertical) has an integer length, while
the other one (say, horizontal) has a length which is a multiple of

√
3. Thus

the area of the rectangle is a multiple of 2S. Since the area of the hexagon
equals 3S, the number of the triangles in the partition is odd. Now we prove
that this is impossible.

Each (non-extendable) segment in the partition is covered by the segments
of integer lengths and sides of length

√
3 on both sides. Thus the number

of the segments of length
√

3 adjoining the segment is even. Next, none of
the vertical sides of the rectangle adjoins such segments, while the horizontal
sides of the rectangle are partitioned into such segments, and hence they
also adjoin an even number of segments of length

√
3 in total. Thus the total

number of sides of length
√

3 is even; but any triangle in the partition contains
exactly one such side. This is a contradiction.
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