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1. (Yu.Blinkov) An altitude AH of triangle ABC bisects a median BM . Prove
that the medians of triangle ABM are sidelengths of a right-angled triangle.

Solution. Let AH and BM meet at point K, let L be the midpoint of
AM , and let N and P be the projections of L and M respectively to BC
(fig.8.1). Since K is the midpoint of BM , it follows that KH is a midline of
triangle BMP , i.e. PH = HB. On the other hand, by the Thales theorem
CP = PH and PN = NH, hence N is the midpoint of BC. Therefore
NK is a medial line of triangle BMC, i.e. NK ∥ AC and ALNK is a
parallelogram. Hence LN = AK. Also the median from M in triangle AMB

is a midline of ABC, hence it is congruent to BN . Therefore the sides of
right-angled triangle BNL are congruent to the medians of ABM .

A

BC

K

HN

M

L

P

Fig. 8.1

2. (E.Bakaev) A circumcircle of triangle ABC meets the sides AD and CD

of a parallelogram ABCD at points K and L respectively. Let M be the
midpoint of arc KL not containing B. Prove that DM ⊥ AC.

First solution. By the assumption we obtain that ALCB is an isosceles
trapezoid, i.e AL = AD (fig.8.2). Now AM is the bisector of isosceles triangle
ALD, thus AM is also its altitude. Hence AM ⊥ CD. Similarly CM ⊥ AD.
Therefore M is the orthocenter of triangle ACD and DM ⊥ AC.
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Second solution. Consider the circumcircle of triangle ABC. The equality
of angles BAK and BCL yields the equality of arcs BAK and BCL. The
arcs LM and KM are also equal, and since the sum of these four arcs is the
whole circle, we obtain that BM is a diameter. Then the triangles BAM and
BCM are right-angled, i.e BA2 + AM 2 = BM 2 = BC2 + CM 2. Rewrite
this equality as BA2 −BC2 = CM 2 − AM 2 and modify left part using the
equality of opposite sides of parallelogram: CD2−AD2 = CM 2−AM 2. By
the Carnot principle we obtain that DM ⊥ AC.

3. (D.Prokopenko) A trapezoid ABCD and a line l perpendicular to its bases
AD and BC are given. A point X moves along l. The perpendiculars from
A to BX and from D to CX meet at point Y . Find the locus of Y .

Answer. The line l′ that is perpendicular to the bases of the trapezoid and
divides AD in the same ratio as l divides CB.

First solution. Let XU , Y V be the altitudes of triangles BXC, AYD
(fig.8.3.1). Then ∠Y AV = ∠BXU and ∠Y AD = ∠CXU because the sides
of these angles are perpendicular. Therefore the triangle AV Y is similar to
XUB, and the triangle DV Y is similar to XUC. From this we obtain that
the ratio AV : V D = CU : UB does not depend on X, i.e. Y lies on l′. It is
clear that all points of this line are in the required locus.
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Second solution. The locus of points with the constant difference of squares
of the distances from the endpoints of a segment is a line perpendicular to
this segment. Hence it is sufficient to prove that the difference Y B2 − Y C2

is constant.

Since the lines BX and AY are perpendicular, we have Y B2 − AB2 =
Y X2−AX2. Similarly DC2−Y C2 = DX2−Y X2. Summing these equalities
we obtain that Y B2 − Y C2 = (DX2 − AX2) + (AB2 − DC2). The first
difference is constant by the definition of X. Therefore all points Y lie on
the line perpendicular to BC.

Third solution. Let the lines AB and CD meet at point P . Consider the
homothety with center P mapping the segment BC to AD. Let X ′ be the
image of X. The homothety maps BX and CX to parallel lines AX ′ and
DX ′. Therefore the angles X ′AY and X ′DY are right and the quadrilateral
X ′AYD is cyclic. We obtain also that X ′ moves along a fixed line l′ parallel
to l.

Let Q, R be the projections of X ′ and Y to AD (fig. 8.3.2). Since the midpoint
of diameter X ′Y is projected to the midpoint of chord AD, we obtain by the
Thales theorem that AQ = DR. The point Q is fixed, hence Y moves along
the line passing through R and parallel to the bases.
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4. (N.Beluhov) Is it possible to dissect a regular decagon along some of its
diagonals so that the resulting parts can form two regular polygons?

Answer. Yes, see fig.8.4

Remark. This construction works for all regular 2n-gons with n ≥ 3.



Fig.8.4
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5. (A.Khachaturyan) Three points are marked on the transparent sheet of pa-
per. Prove that the sheet can be folded along some line in such a way that
these points form an equilateral triangle.
Solution. Let A, B, C be the given points, AB be the smallest side of
triangle ABC, D be the vertex of an equilateral triangle ABD, l be the
perpendicular bisector to segment CD. Since AD = AB ≤ AC and BD =
AB ≤ BC, the points A, B lie on the same side from l as D. Thus if we fold
the sheet along l then A and B do not move, and C maps to D.

6. (E.Bakaev) A triangle ABC with ∠A = 60◦ is given. Points M and N on
AB and AC respectively are such that the circumcenter of ABC bisects
segment MN . Find the ratio AN : MB.
Answer. 2.
First solution. Let P , Q be the projections of N and the circumcenter O

respectively to AB (fig.8.6). From the condition we have MQ = QP . On the
other hand Q is the midpoint of AB, thus BM = AP . But in the right-angled
triangle APN we have ∠A = 60◦. Therefore BM = AP = AN/2.
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Second solution. Let P be the point on the circumcircle of ABC opposite
to A. Since O bisects the segments AP and MN , we have that AMPN is



a parallelogram. The angles BAC and BMP are equal because AC ∥ MP .
The angle ABP is right because AP is a diameter. Thus BMP is a right-
angled triangle with ∠M = 60◦, therefore MP : MB = 2. The segments
MP and AN are the opposite sides of parallelogram, hence AN : MB = 2.

7. (A.Zaslavsky) Diagonals of a quadrilateral ABCD are equal and meet at
point O. The perpendicular bisectors to segments AB and CD meet at point
P , and the perpendicular bisectors to BC and AD meet at point Q. Find
angle POQ.

Answer. 90◦.

Solution. Since PA = PB and PC = PD, the triangles PAC and PBD
are congruent (fig.8.7). Therefore the distances from P to the lines AC and
BD are equal, i.e. P lies on the bisector of some angle formed by these lines.
Similarly Q also lies on the bisector of some of these angles. Let us prove that
these points lie on different bisectors. The bisector of angle AOB meets the
perpendicular bisector to AB at the midpoint of arc AB of the circle AOB.
Also this bisector meets the perpendicular bisector to CD at the midpoint
of arc CD of circle COD. These two points lie on the different sides from O,
hence P lies on the bisector of angle AOD. Similarly Q lies on the bisector
of angle AOB. It is evident that these bisectors are perpendicular.
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Fig. 8.7

8. (V.Protasov) A criminal is at point X, and three policemen at points A, B
and C block him up, i.e. the point X lies inside the triangle ABC. Each
evening one of the policemen is replaced in the following way: a new police-
man takes the position equidistant from three former policemen, after this
one of the former policemen goes away so that three remaining policemen
block up the criminal too. May the policemen after some time occupy again
the points A, B and C (it is known that at any moment X does not lie on
a side of the triangle)?

Answer. No.

First solution. It is evident that all triangles formed by the policemen
after the first evening are isosceles. Thus we can suppose that in the original
triangle AC = BC. Let O, R be the circumcenter and the circumradius of
triangle ABC. Then since OC ⊥ AB and X lies inside ABC, we obtain
that the projection of X to the altitude CD lies between C and D. Hence
XC2 − XO2 < CD2 − DO2 = AC2 − AO2 or XC2 − AC2 < XO2 − R2.
Similarly O′X2 − R′2 < OX2 − R2, where O′, R′ are the circumcenter and
the circumradius of the new triangle formed by the policemen. Therefore
the degree of X wrt the circumcircle of policemen’s triangle decreases each
evening and the policemen cannot occupy the initial points.

Second solution. Let A be the vertex of the triangle nearest to X, and O
be the circumcenter. It is clear that X cannot lie inside the triangle OBC,
i.e. A is a vertex of the new triangle containing X. Therefore the distance
from X to the nearest vertex does not increase. This is also correct for the
further steps. If the sequence of triangles is periodic then this distance is
constant and A is the vertex of all triangles containing X. These triangles
are isosceles and A is the vertex at the base, i.e. the angle at this vertex
is acute. Hence one of rays BO, CO passes through the triangle. Let the
extension of segment AX meet BC at point Y . Since one of rays BO, CO
intersects the segment AY , we obtain that the distance XY decreases at
each step, therefore the policemen cannot occupy the initial points again.
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1. (D.Shvetsov) The diagonals of a parallelogram ABCD meet at point O. The
tangent to the circumcircle of triangle BOC at O meets the ray CB at point
F . The circumcircle of triangle FOD meets BC for the second time at point
G. Prove that AG = AB.

Solution. From the tangency we have ∠FOB = ∠BCO = ∠GCA, and
since FGOD is cyclic, ∠FOB = ∠DGC.

We obtain that ∠GCA = ∠DGC, hence AGCD is an isosceles trapezoid
and AG = DC = AB.
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2. (D.Khilko) Let H be the orthocenter of an acute-angled triangle ABC. Point
XA lying on the tangent at H to the circumcircle of triangle BHC is such
that AH = AXA and H ̸= XA. Points XB and XC are defined similarly.
Prove that the triangle XAXBXC and the orthotriangle of ABC are similar.

Solution. Let O be the circumcenter of ABC (fig. 9.2). Let us prove that
AO ⊥ HXA. In fact, the translation by vector AH maps the circle ABC
to the circle BHC. Hence the tangent at H is parallel to the tangent at A

and perpendicular to the radius OA. Since HAXA is an isosceles triangle,
its altitude coincides with the median. Thus AO is the perpendicular bisec-
tor to HXA. Similarly BO, CO are the perpendicular bisectors to HXB,
HXC respectively. Therefore H, XA, XB, XC lie on a circle centered at O.
Now we have ∠XAXCXB = ∠XAHXB = ∠CHXA + ∠XBHC = 2(90◦ −



∠C) = ∠H1H3H2. Similarly ∠XAXBXC = ∠H1H2H3 and ∠XBXAXC =
∠H2H1H3. Since the correspondent angles of triangles XAXBXC and H1H2H3

are equal, these triangles are similar.
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Remark. This solution can be modified. The midpoints of segments HXA,
HXB, HXC lie on the circle with diameter OH and form a triangle similar
to the orthotriangle (this can be proved as above). This reasoning allows to
prove a general assertion: if P and Q are isogonally conjugated, and A1, B1,
C1 are the projections of P to AQ, BQ and CQ, then the triangle A1B1C1

is similar to the pedal triangle of P .

3. (V.Kalashnikov) Let O and I be the circumcenter and the incenter of triangle
ABC. The perpendicular from I to OI meets AB and the external bisector
of angle C at points X and Y respectively. In what ratio does I divide the
segment XY ?

Answer. 1 : 2.

First solution. Let Ia, Ib, Ic be the excenters of ABC. Then ABC and
its circumcircle are the orthotriangle and the nine-points circle of triangle



IaIbIc. Hence the circumcenter of IaIbIc is symmetric to I wrt O, and its cir-
cumradius is equal to the double circumradius of ABC. The triangle A′B′C ′

homothetic to ABC with center I and coefficient 2 has the same circumcir-
cle. The line l passing through I and perpendicular to OI carves the chord
of this circle with midpoint I, the chords IaA

′ and IbB
′ also pass through

it (fig.9.3). By the butterfly theorem IaIb and A′B′ meet l at two points
symmetric about I, therefore IX : IY = 1 : 2.
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Second solution. Consider the points such that the sum of oriented dis-
tances from them to the sidelines of ABC is equal to 3r, where r is the radius
of the incircle. Since the distance is a linear function, the locus of such points
is a line passing through I. Since the sum of the projections of vector OI to
the lines AB, BC, CA is zero, this line is perpendicular to OI. Since Y lies
on the external bisector of angle C, the sum of distances from Y to AC and
BC is zero. Thus the distance from Y to AB is equal to 3r, i.e. Y X = 3IX.

4. (N.Beluhov) One hundred and one beetles are crawling in the plane. Some
of the beetles are friends. Every one hundred beetles can position themselves
so that two of them are friends if and only if they are at the unit distance



from each other. Is it always true that all one hundred and one beetles can
do the same?
Answer. No.
First solution. Let two beetles be friends if and only if they are connected
by a solid line in the fig. 9.4.

Fig. 9.4.

Suppose that all one hundred and one beetles have positioned themselves
so that the only if part is satisfied (if two beetles are friends then they are
the unit distance apart). If two beetles occupy the same position then the if
part (if two beetles are the unit distance apart then they are friends) fails.
Otherwise, friendships determine a unique structure which forces the two
beetles connected by a dashed line to be the unit distance apart without
being friends and the if part fails again.
If we temporarily forget about any one beetle, the structure becomes flexible
enough so that both the if and the only if part can be satisfied.
Second solution. Consider the following graph: the trapezoid ABCD with
the bases BC = 33 and AD = 34 and the altitude

√
3/2 composed from

67 regular triangles with side 1, and the path with length 33 joining A and



D. It is clear that this graph can not be drawn on the plane satisfying the
condition of the problem, but we can do it if an arbitrary vertex is removed.
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5. (F.Nilov) The center of a circle ω2 lies on a circle ω1. Tangents XP and XQ

to ω2 from an arbitrary point X of ω1 (P and Q are the touching points)
meet ω1 for the second time at points R and S. Prove that the line PQ
bisects the segment RS.
First solution. Let O be the center of ω2. Since XO is the bisector of angle
PXQ, we have OR = OS. Thus the right-angled triangles OPR and OQS

are congruent by a cathetus and the hypothenuse, i.e. PR = QS (fig.9.5).
Since ∠XPQ = ∠XQP , we obtain that R and S lie at equal distances from
the line PQ, which is equivalent to the required assertion.
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Second solution. Let O be the center of ω2. Since XO bisects the angle
PXQ, we obtain that O is the midpoint of arc RS. Hence the midpoint K
of segment RS is the projection of O to RS. Therefore P , Q and K lie on
the Simson line of point O.



6. (M.Timokhin) The sidelines AB and CD of a trapezoid ABCD meet at
point P , and the diagonals of this trapezoid meet at point Q. Point M on the
smallest base BC is such that AM = MD. Prove that ∠PMB = ∠QMB.
First solution. Let the lines PM , QM meet AD at points X, Y respec-
tively, and let U be the midpoint of AD. Since AX : XD = BM : MC =
Y D : AY , we obtain that AX = Y D and XU = UY (fig. 9.6). Hence the
perpendicular bisector UM of segment AD is also the bisector of isosceles
triangle XMY , and BC is the bisector of angle PMQ.
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Second solution. The line PQ passes through U and the midpoint V of
segment BC (fig. 9.6) so that the quadruple P , Q, U , V is harmonic. Since
the lines MU and MV are perpendicular they are the external and the
internal bisectors of angle PMQ.

7. (A.Zaslavsky) From the altitudes of an acute-angled triangle, a triangle can
be composed. Prove that a triangle can be composed from the bisectors of
this triangle.
Solution. Let in a triangle ABC be ∠A ≥ ∠B ≥ ∠C. Then the altitudes
ha, hb, hc satisfy the inequality ha ≤ hb ≤ hc, and the similar inequality
holds for the bisectors la, lb, lc. Consider two cases.
1) ∠B ≥ 60◦. Then ∠A−∠B ≤ ∠B−∠C. Hence hc/lc = cos(∠A−∠B)/2 ≥
ha/la = cos(∠B − ∠C)/2. Also hc/lc > hb/lb. Now from hc < ha + hb we
obtain that lc < la + lb.



2) ∠B ≤ 60◦. Then since ∠A < 90◦, we have ∠C > 30◦. Thus la ≥ ha =
AC sin∠C > AC/2 and lb > BC/2. But lc is not greater than the corre-
sponding median, which is less than the half-sum of AC and BC. Therefore
lc < la + lb.

Remark. Note that in the first case we did not use that the triangle is
acute-angled, and in the second case we did not use that a triangle can be
composed from the altitudes. But both conditions are necessary. An example
of an obtuse-angled triangle, for which a triangle can be composed from the
altitudes but not from the bisectors is constructed in the solution of problem
9.5 of VII Sharygin Olympiad.

8. (I.Frolov) The diagonals of a cyclic quadrilateral ABCD meet at point M .
A circle ω touches segments MA and MD at points P , Q respectively and
touches the circumcircle of ABCD at point X. Prove that X lies on the
radical axis of circles ACQ and BDP .

First solution. The inversion with the center at X maps the lines AC and
BD to the circles ω1 and ω2 intersecting at points X and M ′. Furthemore this
inversion maps ω to a line touching these circles at points P ′, Q′ respectively.
Finally it maps the circle ABCD to a line parallel to P ′Q′, meeting ω1 at
points A′, C ′, and meeting ω2 at points B′, D′ (fig. 9.8). Since M lies on the
radical axis of circles ACQ and BDP , we have to prove that the radical axis
of A′C ′Q′ and B′D′P ′ coincides with the line XM ′.

Let K be the common point of XM ′ and A′D′. Since A′K · KC ′ = XK ·
KM ′ = B′K ·KD′, we obtain that K lies on the radical axis of circles A′C ′Q′

and B′D′P ′. Also the circle A′C ′Q′ meets P ′Q′ for the second time at the
point symmetric to Q′ about P ′, and the circle B′D′P ′ meets it at the point
symmetric to P ′ about Q′. Thus the degrees of the midpoint of P ′Q′ lying
on M ′X, about these circles are also equal, and this completes the proof.
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Second solution. Let l be the tangent at X to the circle ABCD; and let l
meet AC and BD at the points S and T respectively. Then SM is the radical
axis of circles ABCD and ACQ, ST is the radical axis of circles ABCD and
ω, i.e. S is the radical center of circles ABCD, ACQ and ω, hence SQ is
the radical axis of circles ACQ and ω (because Q lies on the circles ACQ
and ω). Similarly TP is the radical axis of circles BDP and ω. Therefore the
common point G of SQ and TP is the radical center of circles ACQ, BDP
and ω. On the other hand M is the radical center of circles ACQ, BDP and
ABCD, i.e. MG is the radical center of circles ACQ and BDP , also MG
passes through X, because G is the Gergonne point of triangle MST .
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1. V.Yasinsky A line parallel to the side BC of a triangle ABC meets the
sides AB and AC at points P and Q, respectively. A point M is chosen
inside the triangle APQ. The segments MB and MC meet the segment PQ
at E and F , respectively. Let N be the second intersection point of the
circumcircles of the triangles PMF and QME. Prove that the points A, M ,
and N are collinear.

First solution. Let P ′ and Q′ be the second intersection points of the cir-
cle (PMF ) with AB and of the circle (QME) with AC. We have ∠MP ′A =
∠MFP = ∠MCB, so the point P ′ lies on the circle (BMC). Similarly,
the point Q′ also lies on the same circle. Therefore, we have AP ′/AQ′ =
AC/AB = AQ/AP , which means that the powers of the point A with
respect to the two given circles are equal. This yields that A lies on the
line MN .
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Second solution. Let AM meet PQ and BC at points K and L respec-
tively. Then EK : FK = BL : CL = PK : QK. Therefore, PK · FK =
QK · EK and both circles meet AM at the same point.



2. (P.Kozhevnikov) Let I and Ia be the incenter and the excenter of a triangle
ABC; let A′ be the point of its circumcircle opposite to A, and A1 be the
base of the altitude from A. Prove that ∠IA′Ia = ∠IA1Ia.

Solution. Since ∠A1AB = ∠CAA′ and ∠ACA′ = 90◦, the triangles ACA′

and AA1B are similar. Hence AAa · AA′ = AB · AC. On the other hand
∠AIaC = ∠ABI, thus the triangles AIB and ACIa are similar and AI ·
AIa = AB · AC.

Let A2 be the reflection of A1 about the bisector of angle A. Then A2 lies on
AA′ and as is proved above AA2 · AA′ = AI · AIa. Therefore IA2A

′Ia is a
cyclic quadrilateral and ∠IA′Ia = ∠IA2Ia = ∠IA1Ia (fig. 10.2).
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3. (V.Kalashnikov) Let two triangles ABC and A′B′C ′ have the common incir-
cle and circumcircle, and let a point P lie inside both triangles. Prove that
the sum of distances from P to the sidelines of ABC is equal to the sum of
distances from P to the sidelines of A′B′C ′.

Solution. As is proved in the solution of problem 9.3, the locus of the points
with constant sum of oriented distances to the sidelines of triangle ABC is a



line perpendicular to OI, where O, I are the circumcenter and the incenter
respectively. Also the sum of distances from I to the sidelines of both triangles
is equal to 3r, and the sum of the corresponding distances from O is equal to
R+ r (the Carnot formula), where R and r are the radii of the circumcircle
and the incircle. Therefore these sums are equal for all points of the plane.

Remark. The assertion remains true if we replace the triangles by two bi-
centric n-gons with an arbitrary n.

4. (N.Beluhov) Devil and Man are playing a game. Initially, Man pays some sum
s and lists 97 triples (not necessarily distinct) AiAjAk, 1 ≤ i < j < k ≤ 100.
After this Devil draws some convex 100-gon A1A2 . . . A100 of area 100 and
pays the total area of 97 triangles AiAjAk to Man. For which maximal s this
game is profitable for Man?

Answer. For s = 0.

First solution. Lemma. Let T be a set of at most n− 3 triangles with the
vertices chosen among those of the convex n-gon P = A1A2 . . . An. Then the
vertices of P can be coloured in three colours so that every colour occurs
at least once, the vertices of every colour are successive, and T contains no
triangle whose vertices have three different colours.

Proof of the lemma. We proceed by induction on n.

When n = 3, T is empty and the claim holds.

Suppose n > 3. If A1An is not a side of any triangle in T , then we colour
A1 and An in two different colours and all other vertices in the remaining
colour.

Now suppose that A1An is a side of at least one triangle in T and the set U
is obtained from T by removing all these triangles and replacing An by A1

in all the remaining ones. By the induction hypothesis for the polygon Q =
A1A2 . . . An−1 and the set U , there is an appropriate colouring of the vertices
of Q. By further colouring An in the colour of A1, we get an appropriate
colouring of P . �
Now imagine that Devil has chosen a convex 100-gon P of area 100 such that
P is inscribed in a circle k, all vertices of P of colour i lie within the arc ci
of this circle with central angle ε◦, and the midpoints of c1, c2, and c3 form
an equilateral triangle. When ε tends to zero, the areas of all triangles listed
by the Man also tend to zero, and so does their sum.



Second solution. For each triple (i, j, k) let the vertex Ai be labelled by the
number of sides covered by the angle AjAiAk (it is the same for all 100-gons),
and do the same operation with Aj and Ak. The sum of these numbers is 100
for each triple, therefore the total sum is equal to 97 · 100, thus the sum in
some vertex (for example A1) is not greater than 97; from this we obtain that
there exists a side AkAk+1 not containing A1 and such that the angles with
vertex A1 do not cover this side. Now the Devil can draw a 100-gon, in which
the vertices A2, . . . , Ak−1 are close to Ak, and the vertices Ak+2, . . . , A100 are
close to Ak+1, and make the areas of all 97 triangles arbitrary small.
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5. (A.Blinkov) Does there exist a convex polyhedron having equal numbers of
edges and diagonals? (A diagonal of a polyhedron is a segment between two
vertices not lying in one face.)

Answer. Yes. For example each vertex of the upper base of a hexagonal
prism is the endpoint of three diagonals joining it with the vertices of the
lower base. Hence the common number of diagonals is 18 as well as the
number of edges.

6. (I.I.Bogdanov) A triangle ABC is given. The point K is the base of an
external bisector of angle A. The point M is the midpoint of arc AC of the
circumcircle. The point N on the bisector of angle C is such that AN ∥ BM .
Prove that M , N and K are collinear.

First solution. Let I be the incenter. Then K, M , N lie on the side-
lines of triangle BIC (fig. 10.6). We have KB/KC = AB/AC, NC/IN =
AC/AB′ = (BC + AB)/AB (where B′ is the base of bisector from B),
MI/MB = MC/MB = AB′/AB = AC/(AB + BC) (the second equality
follows from the similarity of triangles BMC and BAB′). By the Menelaus
theorem we obtain the required assertion.
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Second solution. Note that ∠MAC = ∠MBC = ∠ABM = ∠BAN , i.e.
the lines AI and AK are the internal and the external bisector of triangle
AMN . Let AI meet MN and BC at points P and Q respectively, and let
AK meet MN at K ′. Then the quadruples (B,C,K,Q) and (M,N,K ′, P )
are harmonic, therefore projecting MN to BC from I, we obtain that K ′

coincides with K.

7. (A.Zaslavsky) Restore a triangle by one of its vertices, the circumcenter and
the Lemoine point. (The Lemoine point is the common point of the lines
symmetric to the medians about the correspondent bisectors.)

First solution. Since the vertex A and the circumcenter O are given, we
can construct the circumcircle. Let XY be the chord of this circle with
the midpoint at the Lemoine point L, let UV be the diameter parallel to
this chord, and let the diagonals of the trapezoid with bases XY and UV

meet at point K. Consider a transformation that maps each point P of the
circumcircle to the second common point P ′ of the circle and the line KP .
This transformation preserves the cross-ratios, thus it can be extended to a
projective transformation of the plane. Since this transformation maps L to
O, it maps the triangle in question to a triangle with coinciding Lemoine
point and circumcenter. This triangle is regular. From this we obtain the
following construction.

Draw line AK and find its second common point A′ with the circumcircle.
Inscribe a regular triangle A′B′C ′ into the circle and find the second common
points B, C of lines BK, CK with the circle. Then ABC is the required
triangle.

Second solution. We use the following assertion.

Lemma. Let a triangle ABC and a point P be given. An inversion with
center A maps B, C, P to B′, C ′, P ′ respectively. Let the circle B′C ′P ′

meet AP for the second time at Q. Then the similarity transforming the
triangle AC ′B′ to ABC maps Q to the point isogonally conjugated to P .

The assertion of this lemma clearly follows from the equalities ∠ABP =
∠B′P ′A = ∠B′C ′Q.

Let us return to the problem. Let an inversion with center A map L and the
circumcircle to L′ and line l respectively. Let AL meet l at point T , and let
point M divide the segment AT in ratio 2 : 1. Then M is the centroid of
triangle AB′C ′, where B′, C ′ are the images of B and C. By the lemma M



lies on the circle B′C ′L′, therefore KB′2 = KC ′2 = KM ·KL′. Thus we can
construct B′, C ′, and B, C.

8. (S.Novikov) Let ABC be a nonisosceles triangle, let AA1 be its bisector, and
let A2 be the touching point of BC with the incircle. The points B1, B2, C1,
C2 are defined similarly. Let O and I be the circumcenter and the incenter
of the triangle. Prove that the radical center of the circumcircles of triangles
AA1A2, BB1B2, CC1C2 lies on OI.
First solution. Let A′ be the midpoint of an arc BC not containing A.
Since the inversion with center A′ and radius A′B transposes the line BC
and the circumcircle, it maps A1 and A2 to A and the common point A′′

of A′A2 and the circumcircle. Therefore the points A, A1, A2 and A′′ are
concyclic. Furthermore since OA′ ∥ IA2, the lines OI and A′A2 meet at the
point K which is the homothety center of the circumcircle and the incircle
(fig. 10.8). Hence the degree of K wrt the circle AA1A2 is equal to

(K⃗A2, K⃗A′′) =
r

R
(K⃗A′, K⃗A′′) = − r3R

(R− r)2
,

because (K⃗A′, K⃗A′′) is the degree of K wrt the circumcircle, equal to −R2r2/(R−
r)2.
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Clearly the degrees of K wrt the circles BB1B2 and CC1C2 are the same,
i.e. K is the radical center.

Second solution. Let A′, B′, C ′ be the midpoints of the arcs BC, CA,
AB. Then the triangles A′B′C ′ and A2B2C2 are homothetic with a positive
coefficient and center K, i.e. KA2/A

′A2 = KB2/B
′B2 = KC2/C

′C2 = k.
For the points of line A′A2 consider the difference of the degrees wrt AA1A2

and the incircle. This is a linear function. In A2 this function is equal to zero,
and in A′ it is equal to r2 because A′A1 · A′A = A′B2 = A′I2. Thus in K
this difference is equal to −kr2. Two similar differences in K are also equal
to −kr2, and we obtain the required assertion.


