
XIII Geometrical Olympiad in honour of I.F.Sharygin
Solutions. Final round. First day. 8 grade

1. (D.Mukhin, D.Shiryaev) Let ABCD be a cyclic quadrilateral with AB = BC
and AD = CD. A point M lies on the minor arc CD of its circumcircle. The
lines BM and CD meet at point P , the lines AM and BD meet at point
Q. Prove that PQ ∥ AC.

Solution. The angle MPD cuts the arcs MD and BC, and the angle MQD
cuts the arcs MD and AB. Therefore these angles are equal and MPQD
is a cyclic quadrilateral (fig.8.1). Now since ∠DMP = ∠DMB = 90◦, we
have PQ ⊥ BD, thus PQ ∥ AC.
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2. (A.Sokolov) Let H and O be the orthocenter and the circumcenter of an
acute-angled triangle ABC, respectively. The perpendicular bisector to seg-
ment BH meets AB and BC at points A1 and C1, respectively. Prove that
OB bisects the angle A1OC1.

First solution. Since ∠HBC = ∠ABO = 90◦ − ∠C, isosceles triangles
HBC1 and ABO are similar. Hence triangles OBC1 and ABH are also
similar, i.e., ∠C1OB = ∠HAB = 90◦ − ∠B (fig.8.2). Similarly ∠A1OB =
∠HCB = 90◦ − ∠B.
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Second solution. Use the following assertion.

Let A′, B′, C ′ be the reflections of point P about the sidelines of triangle
ABC. Then the circumcenter of A′B′C ′ is isogonally conjugated to P with
respect to ABC.

Consider the triangle A1BC1. The reflections of H about BA1 and BC1 lie on
the circumcircle of ABC, and the reflection of H about A1C1 coincide with
B, thus, O and H are isogonally conjugated with respect to A1BC1. Then
∠AA1O = ∠HA1C = ∠C1A1B, i.e. C1B is the external bisector of angle
OA1C1. Similarly A1B is the external bisector of angle C1OA1. Therefore B

is the excenter of triangle A1OC1 and OB is the bisector of angle A1OC1.

3. (M.Kyranbai, Kazakhstan) Let AD, BE and CF be the medians of triangle
ABC. The points X and Y are the reflections of F about AD and BE,
respectively. Prove that the circumcircles of triangles BEX and ADY are
concentric.

Solution. Since AFDE is a parallelogram, the midpoints of segments FE

and AD coincide, therefore EX ∥ AD. Since FEX is a right-angled triangle,
the perpendicular bisector to EX passes through the midpoint of EF , thus
it coincides with the perpendicular bisector to AD (fig.8.3). Similarly we
obtain that the perpendicular bisectors to DY and BE coincide.
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4. (A.Shapovalov) Alex dissects a paper triangle into two triangles. Each minute
after this he dissects one of obtained triangles into two triangles. After several
time (at least one hour) it appeared that all obtained triangles are congruent.
Find all initial triangles for which this is possible.

Answer. Isosceles or right-angled.

Solution. Sufficiency. Cutting an isosceles triangle by its median we obtain
two congruent right-angled triangles, and cutting a right-angled triangle by
the median from the right angle we obtain two isosceles triangles. Cutting
each of them into two congruent triangles we obtain four congruent right-
angled triangles. Similarly we can cut off each of these triangles into four
congruent triangles etc.

Necessity. After the last cutting we obtain two congruent triangles having
two adjacent angles. Each of these angles is greater than a non-adjacent angle
of the other triangle, thus it is equal to the adjacent angle, i.e, it is right. So
the initial triangle is divided into right-angled triangles. Let their angles be
α, β = 90◦−α and 90◦, where α ≤ β. If α = 45◦ or α = 30◦, then all angles
of the initial triangle are divisible by α, and direct listing of the alternatives
shows that they are equal to (45◦, 45◦, 90◦), (30◦, 60◦, 90◦), (30◦, 30◦, 120◦)
or (60◦, 60◦, 60◦), i.e., the triangle is right-angled or isosceles.

For the remaining values of α the list α, β, 2α, 90◦, 2β does not contain
equal angles, and all pairs of adjacent angles from this list are (90◦, 90◦) or
(2α, 2β). Let the area of all resulting triangles be 1, then the area s of the



initial triangles and all areas of intermediate triangles are natural. Let us
prove by induction on s that the angles of these triangles are (α, β, 90◦),
(α, α, 2β) or (β, β, 2α). The base s = 1 is proved. A triangle T with s > 1
was divided into two triangles with smaller area. By induction, each of these
triangles has one of three sets of angles from the list and they have two
adjacent angles. If these angles are right then both triangles have a common
cathetus. There are three possible cases: both opposite angles are equal to
α; both angles are equal to β, or one angle is α, and the second one is β. In
all these cases T belongs to one of three types. And if two adjacent angles
are equal to 2α and 2β then T is right-angled with angles (α, β, 90◦).
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5. (E.Bakaev) A square ABCD is given. Two circles are inscribed into angles
A and B, and the sum of their diameters is equal to the sidelength of the
square. Prove that one of their common tangents passes through the midpoint
of AB.

Solution. Let Oa, Ob be the centers of the circles, Ta, Tb be their touching
points with AB, and M be the midpoint of AB (fig.8.5). By the assumption
of the problem, we obtain that TaM = MOb, TbM = MOa. Therefore
∠OaMTa+∠ObMTb = 90◦, i.e., OaM ⊥ ObM . Thus the line l symmetric to
AB wrt OaM is also symmetric to AB wrt ObM . Since the distances from
the centers of both circles to l are equal to their radii, we obtain that l is the
common tangent.
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6. (A.Shapovalov) A median of an acute-angled triangle dissects it into two
triangles. Prove that each of them can be covered by a semidisc congruent
to a half of the circumdisc of the initial triangle.

Solution. Let CD be the median of triangle ABC, angle ADC be non-
acute, and angle BDC be non-obtuse. Then all vertices of triangle BDC

lie on the same semiplane wrt the perpendicular bisector to AB, which is



the diameter of the circumcircle of ABC, therefore this triangle lies inside
the corresponding semidisc. Furthermore the triangle ACD can be covered
by the semidisc wuth diameter AC, hence it can be covered by a greater
semidisc.

7. (E.Bakaev) Let A1A2 . . . A13 and B1B2 . . . B13 be two regular 13-gons in the
plane such that the points B1 and A13 coincide and lie on the segment A1B13,
and both polygons lie in the same semiplane with respect to this segment.
Prove that the lines A1A9, B13B8 and A8B9 are concurrent.

Solution. Consider the regular polygon C1C2 . . . C13, where C1 = A1, C13 =
B13. Clearly the lines A1A9 and B1B8 coincide with C1C9 and C13C8 re-
spectively. Furthermore C1C13 = C8C9, thus C1C8 and C13C9 are the bases
of an isosceles trapezoid. The points A8 and B9 lie on these bases and
A1A8 : A8C8 = A1A13 : B1B13 = C9B9 : B9B13. Therefore the line A8B9

passes through the common point of the diagonals of the trapezoid (fig.8.7).
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8. (Tran Quang Hung, Vietnam) Let ABCD be a square, and let P be a point
on the minor arc CD of its circumcircle. The lines PA, PB meet the di-
agonals BD, AC at points K, L respectively. The points M , N are the



projections of K, L respectively to CD, and Q is the common point of lines
KN and ML. Prove that PQ bisects the segment AB.

Solution. Firstly prove the following assertion.

Lemma. Let AP = AC and BQ = BC be the perpendiculars to the hy-
pothenuse AB of a right-angled triangle ABC lying on the outside of the
triangle. The lines AQ and BP meet at point R, and the lines CP and CQ

meet AB at points M and N respectively. Then CR bisects the segment
MN .

Proof. Since ∠CAP = 90◦ + ∠CAB = 180◦ − ∠CBA, we have ∠ACP =
∠B
2 . Hence BM = BC = BQ and similarly AN = AC = AP . Let the

line passing through R and parallel to AB meet CP , CQ at points X, Y
respectively, and let Z be the projection of R to AB (fig.8.8). Then RX :
BM = PR : PB = AR : AQ = RZ : QB, Therefore RX = RZ. Similarly
RY = RZ (fig.8.8.1). Thus CR bisects XY , and hence it bisects MN .

A B

C

P

Q

RX Y

M N

Z

Fig. 8.8.1

Note. It it easy to see that CZ is the bisectrix of ABC and CR passes
through the touching point of its incircle with the hypothenuse.



Return to the problem. Since KMD is an isosceles right-angled triangle,
and ∠KPD = 45◦, we obtain that M is the circumcenter of triangle KPD.
Similarly N is the circumcenter of PCL. Furthermore ∠MPN = 45◦ +
(90◦ − ∠BDP

2 ) + (90◦ − ∠ACP
2 ) = 90◦. Applying the lemma to the points P ,

M , N , K, L we obtain the required assertion (fig.8.8.2).
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1. (A.Zaslavsky) Let ABC be a regular triangle. The line passing through the
midpoint of AB and parallel to AC meets the minor arc AB of its circum-
circle at point K. Prove that the ratio AK : BK is equal to the ratio of the
side and the diagonal of a regular pentagon.

Solution. Let L be the second common point of the line and the circle
(fig.9.1). Since ABC is a regular triangle we have AL = BL+CL = BK +
AK. On the other hand KL bisects AB, thus the areas of triangles AKL and
BKL are equal, i.e. AK · AL = BK · BL = BK2. Therefore t = AK/BK

is the root of the equation t2 + t− 1 = 0, equal to the ratio of the side and
the diagonal of a regular pentagon.

A B

C

L

K

Fig. 9.1

2. (S.Berlov, A.Polyanskii) Let I be the incenter of triangle ABC, M be the
midpoint of AC, and W be the midpoint of arc AB of its circumcircle not
containing C. It is known that ∠AIM = 90◦. Find the ratio CI : IW .

Answer. 2 : 1.

Solution. Let Ic be the center of the excircle touching the side AB. Since
AIc ⊥ AI we obtain that IM ∥ AIc, i.e. IM is a medial line of triangle
ACIc. Also W is the midpoint of IIc, therefore CI = IIc = 2IW (fig.9.2).
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3. (A.Mudgal, India) The angles B and C of an acute-angled triangle ABC
are greater than 60◦. Points P and Q are chosen on the sides AB and AC,
respectively, so that the points A, P , Q are concyclic with the orthocenter H
of the triangle ABC. Point K is the midpoint of PQ. Prove that ∠BKC >
90◦.

Solution. Let BB′, CC ′ be the altitudes of triangle ABC. Since ∠PHQ =
180◦ − ∠A = ∠B′HC ′ we obtain that the triangles HB′Q and HC ′P are
similar. Thus, when P moves uniformly along AB the point Q also moves
uniformly along AC and K moves along some segment. Since ∠AHC ′ >

∠CHB′ and ∠AHB′ > ∠BHC ′, the endpoints of this segment correspond
to the coincidence of P with B or Q with C, let us consider the last case
(fig.9.3).
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If Q = C then ∠HCP = ∠HAP = ∠HCB, i.e. BCP is non-isosceles
triangle and the distance from K to the midpoint of BC is equal to BC ′.
Since ∠B > 60◦, we have BC ′ < BC/2, thus K lies inside the circle with
diameter BC. Similarly the second endpoint of the segment passed by K lies
inside this circle, therefore all points of the segment also lie inside it.

4. (M.Etesamifard, Iran) Points M and K are chosen on lateral sides AB and
AC, respectively, of an isosceles triangle ABC, and point D is chosen on its
base BC so that AMDK is a parallelogram. Let the lines MK and BC meet
at point L, and let X,Y be the intersection points of AB, AC respectively
with the perpendicular line from D to BC. Prove that the circle with center
L and radius LD and the circumcircle of triangle AXY are tangent.

Solution. It is clear that the circumcircles of triangles ABC and AXY are
perpendicular. Let E be their second common point. Since E is the center
of spiral similarity mapping X and Y to B and C respectively, the triangles
EXB and EY C are similar, i.e. EB : EC = XB : Y C = BD : CD.
On the other hand LB : LD = LM : LK = LD : LC. Hence B and C

are inverse wrt the circle centered at L with radius LD i.e. this circle is
also perpendicular to the circumcircle of ABC. Also the ratio of distances
from B and C is the same for all points of this circle (an Apollonius circle),
thus it passes through E (fig.9.4). Since both circles are perpendicular to the
circumcircle of ABC and meet it at the same point we conclude that they



are tangent.
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5. (P.Kozhevnikov) Let BHb, CHc be altitudes of a triangle ABC. The line
HbHc meets the circumcircle of ABC at points X and Y . Points P and Q
are the reflections of X and Y about AB and AC, respectively. Prove that
PQ ∥ BC.
Solution. Let O be the circumcenter of triangle ABC. Since the line AO
is the reflection of the altitude from A about the bisector from the same
vertex, and ∠AHbHc = ∠ABC, we obtain that AO ⊥ HbHc, i.e. AO is the
perpendicular bisector to the segment XY . Therefore, AP = AX = AY =
AQ and XPQY is a cyclic quadrilateral (fig.9.5). Hence the lines XY and
PQ are antiparallel with respect to the lines XP and Y Q which are parallel
to the altitudes of the triangle. But BC and HbHc are also antiparallel with
respect to the altitudes, thus PQ ∥ BC.
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6. (M.Etesamifard, Iran) Let ABC be a right-angled triangle (∠C = 90◦) and
D be the midpoint of an altitude from C. The reflections of the line AB about
AD and BD, respectively, meet at point F . Find the ratio SABF : SABC .
Answer. 4/3.



Solution. Let CH be the altitude and K, L be the common points of the line
passing through C and parallel to AB with AF and BF respectively (fig.9.6).
Since the trapezoid AKLB is circumscribed around the circle with diameter
CH, we obtain that KD and LD are the bisectors of angles AKL and BLK
respectively. Hence ∠CKD = 90◦ − ∠HAD, i.e. the triangles KCD and
DHA are similar, and KC = CD2/AH = CH2/(4AH) = BH/4. Similarly
CL = AH/4. Therefore the ratio of the altitudes of similar triangles FKL

and FAB is equal to 1/4, and the ratio of the altitudes of triangles AFB
and ABC is 4/3.
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7. (P.Kozhevnikov) Let a and b be parallel lines with 50 distinct points marked
on a and 50 distinct points marked on b. Find the greatest possible number
of acute-angled triangles all whose vertices are marked.

Answer. 41650.

First solution. Let n = 50.

Introduce coordinates so that lines a and b are given by equations y = 0 and
y = 1 respectively. Denote by A1, A2, . . . , An marked points on a so that
their x-coordinates a1, a2, . . . , an are ordered: a1 < . . . < an. Similarly define
B1, . . . , Bn with x-coordinates b1 < . . . < bn. Let A− and A+ be points on
a such that their x-coordinates satisfy conditions a− < a1 and a+ > an.
Similarly define B− and B+.

Estimate. The total number of triangles with all vertices marked is T =
2
(
n
2

)
n = n2(n − 1). The number of non-acute triangles is not less than the

number N of non-acute angles among angles AiAjBk and BiBjAk. Let us
estimate N .



Fix t ∈ {1, 2, . . . , n} and s ∈ {1, 2, . . . , n}, then WLOG t ≤ s, and consider
the segment AtBs (similarly consider BtAs). The segment AtBs forms two
pairs of equal angles with lines a and b. Note that either ∠A−AtBs and
∠AtBsB

+ both are non-acute, or ∠A+AtBs and ∠AtBsB
− both are non-

acute. In the first case all angles ∠AiAtBs and ∠AtBsBj with i < t and
j > s are non-acute; the number of such angles is (t − 1) + (n − s) =
n − 1 − (s − t). In the second case all angles ∠AiAtBs and ∠AtBsBj with
i > t and j < s are non-acute; the number of such angles is (n−t)+(s−1) =
n − 1 + (s − t). Anyway the total number of non-acute angles of the form
∠AiAtBs or ∠AtBsBj is not less than n − 1 − (s − t). Thus we have the
estimate N ≥ n(n− 1) + 2

∑
1≤t<s≤n

(n− 1− (s− t)) = (n−1)(2n2−n)
3 (here the

summand n(n − 1) corresponds to n segments AsBt with t = s). A direct
calculation shows that the number of acute triangles with all vertices marked
is not greater than T −N ≤ (n−1)n(n+1)

3 = 41650.

Example. Let us mark points so that 0 < a1 < b1 < a2 < b2 < . . . < an <
bn < 1/10. Note that in this example all angles ∠AiBkAj and ∠BiAkBj

are acute. Moreover, for each segment AtBs (or AsBt) with t ≤ s, among
the angles of the form ∠AiAtBs and ∠AtBsBj exactly n − (s − t) + 1 are
non-acute. This means that this example is optimal, since our estimate in
this case is sharp.

Second solution. Clearly, the maximum is achieved when the points of both
sides are located sufficiently closely, in such a way that all angles having the
vertex on one line and the sides passing through two points of the second
one are acute. Let the points on one line be colored blue and the projections
to this line of the points on the second one be colored red. Then we obtain
the following reformulation of the problem.

Suppose 50 blue and 50 red points are marked on a line. Find the maximal
number of triples having the medial point of one color and two extreme points
of the other color.

Let A1, . . . , A50, B1, . . . , B50 be the red and the blue points respectively,
ordered from left to right. Consider two adjacent points Ai and Bj. If Ai lies
on the left side from Bj, these two points form a good triple with B1, . . . , Bj−1

and Ai+1, . . . , A50, i.e. we have n−1+(j−i) good triples. When i > j we can
transpose Ai and Bj and increase the number of such good triples, and this
operation retains all remaining good triples. Hence in the optimal disposition
any point Ai lies to the right from Bi−1, but to the left from Bi+1 (the order



of Ai and Bi can be arbitrary). In particular, the alternating disposition is
optimal. The number of acute-angled triangles in this disposition is calculated
in the previous solution.

8. (I.Frolov) Let AK and BL be the altitudes of an acute-angled triangle ABC,
and let ω be the excircle of ABC touching the side AB. The common internal
tangents to circles CKL and ω meet AB at points P and Q. Prove that
AP = BQ.

First solution. Let R be the internal center of similitude of CKL and ω,
the incircle of ABC touch AB at C1, the incircle of triangle PQR touch AB

at C ′
1, ω touch AB at C2, and C2C3 be a diameter in ω. Then C, R, C3 are

collinear. Furthermore C, C1, C3 are collinear because C is the homothety
center of the incircle and the excircle. Analogously, R, C ′

1, C3 are collinear.
So C ′

1 coincides with C1. Thus the midpoints of AB, C1C2, C ′
1C2, and PQ

coincide, as needed.

Second solution. Let us prove that the assertion of the problem is cor-
rect when we replace CKL by an arbitrary circle centered on the altitude
and passing through C. As in the first solution we obtain that the common
point R of internal common tangents lies on CC1. So we have the following
reformulation of the problem.

The tangents from an arbitrary point R of line CC1 to the excircle meet AB
at points P and Q. Prove that these points are symmetric wrt the midpoint
of AB.

It can be proved that the correspondence between P and Q preserves the
cross-ratios. Hence it is sufficient to find two pairs P , Q symmetric wrt AB.
For R = C the points P , Q coincide with A, B, and for R = C1 they coincide
with C1, C2. In both cases they are symmetric.

Note. In the formulation of the problem, we can replace the excircle by
the incircle and the internal common tangents by the external ones. More-
over, arguing as in the second solution we obtain that the common points of
tangents with AB are the same in both cases.
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1. (D.Shvetsov) Let A and B be the common points of two circles, and CD

be their common tangent (C and D are the tangency points). Let Oa, Ob

be the circumcenters of triangles CAD, CBD respectively. Prove that the
midpoint of segment OaOb lies on the line AB.

Solution. Let C ′, D′ be the touching points of the circles with the second
common tangent. The angles ACD and ADC are equal to the halves of arcs
AC and AD of the corresponidng circles, and the angles BCD and BDC
are equal to the halves of arcs BC and BD which are equal to C ′A and
D′A. Therefore, the sum of four angles is equal to the half-sum of arcs C ′AC
and D′AD. Since the last arc is homothetic to C ′C, this half-sum is equal to
π. Thus the circumcenters of triangles CAD and CBD are symmetric with
respect to CD, i.e., the midpoint of OaOb coincides with the midpoint of CD
which lies on the radical axis AB of the circles (fig.10.1).
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2. (A.Peshnin) Prove that the distance from any vertex of an acute-angled
triangle to the corresponding excenter is less than the sum of two greatest
sidelengths.

Solution. Let in a triangle ABC ∠A = 2α, ∠B = 2β, ∠C = 2γ and
α ≥ β ≥ γ. Let Ia, Ib, Ic be the excenters and p be the semiperimeter of
the triangle .Then the inequalities 2α < 90◦ < 2β + 2γ and β ≥ γ yield



that 2β > α. Also since AIa cosα = BIb cos β = CIc cos γ = p, we have
AIa ≥ BIb ≥ CIc, and it is sufficient to prove that AIa < AC + BC. We
can obtain this in several ways.

First way. Note that a point K symmetric to B with respect to the external
bisector CIa lies on AC, and CK = CB. Since BIa is the external bisector
of angle B, we have ∠IaKA = α+ γ, and since ∠IaAK = α, we obtain that
∠AIaK = 2β + γ (fig.10.2.1). Since 2β > α we have ∠AKIa < ∠AIaK, i.e.
AIa < AK = AC +BC.
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Fig. 10.2.1

Second way. Let the excircle touches AB at point T , and let U be the
reflection of B about T . Since AT = p, we have AU = 2p−AB = AC+BC.
Also, in the triangle AUIa we have ∠UAIa = α, ∠AUIa = ∠IaBT = π/2−
β, thus ∠AIaU = π/2−α+β. Since 2β > α we obtain that ∠AIaU > ∠AUIa
and AU > AIa (fig.10.2.2).
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Third way. We will use the following facts.

1. The trident theorem. The circumcenter of triangle BCIa coincide with
the midpoint W of the arc BC of circle ABC.

2. Let a circle be given, its chord AB be fixed, and point X move on an
arc AB. Then the sum AX + BX increases while X comes closer to the
midpoint of the arc.

By the trident theorem we have AIa = AW+WB. Since ∠WBA−∠WAB =
2β > 2(α−β) = ∠CAB−∠CBA we obtain that C is closer to the midpoint
of arc ACB than W . Therefore, AW +BW < AC +BC.

Note. In fact, we proved that the segment joining any vertex to the corre-
sponding excenter is less than the sum of the opposite and the greatest of
two adjacent sidelengths.

3. (A.Sokolov) Let ABCD be a convex quadrilateral, and let ωA, ωB, ωC , ωD be
the circumcircles of triangles BCD,ACD,ABD,ABC, respectively. Denote
by XA the product of the power of A with respect to ωA and the area of
triangle BCD. Define XB, XC , XD similarly. Prove that XA +XB +XC +
XD = 0.

Solution. If the quadrilateral is cyclic then the assertion is evident. Now
note that D lies outside ωD iff ∠A + ∠C > ∠B + ∠D, i.e. iff C lies inside
ωC . So the signs of XC and XD are opposite.

Let CD meet AB at point P and meet ωC , ωD for the second time at C ′, D′

respectively. Then the ratio of areas of triangles ABC and ABD is equal to
the ratio of their altitudes, which is equal to PC

PD . Since PC ·PD′ = PA·PB =



PC ′ · PD, this ratio is equal to PC
PD = PC ′

PD′ =
PC−PC ′

PD−PD′ =
CC ′

DD′ . On the other
hand, the ratio of the absolute values of the powers of C and D with respect to
the corresponding circles is CD·CC ′

CD·DD′ =
CC ′

DD′ (fig.10.3). Therefore, |XC | = |XD|
and XC +XD = 0. Similarly XA +XB = 0.
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If AB ∥ CD then SABC = SABD, CC ′ = DD′ and we also obtain that
XC +XD = 0.
Note. The equality |XA| = |XB| = |XC | = |XD| is also valid when the four
points do not form a convex quadrilateral.

4. (A.Zaslavsky) A scalene triangle ABC and its incircle ω are given. Using
only a ruler and drawing at most eight lines, rays or segments, construct
points A′, B′, C ′ on ω such that the rays B′C ′, C ′A′, A′B′ pass through A,
B, C, respectively.
Solution. Let A0, B0, C0 be the touching points of the incircle with BC,
CA, AB respectively. Then the required points A′, B′, C ′ are such that
A′A0C

′C0, B′B0A
′A0 and C ′C0B

′B0 are harmonic quadrilaterals. Consider
a projective transform preserving ω and mapping the common point of AA0,
BB0, CC0 to its center. This transform maps ABC to a regular triangle.
Then the triangles A0B0C0 and A′B′C ′ are also regular and A′A0C

′C0 is an
isosceles trapezoid. Let K be a midpoint of A0C0. The harmonicity condition
∠C0A

′C ′ = ∠KA′A0 now reads ∠KA′A0 = ∠A0C0A
′, i.e., △KA′A0 ∼

△A′C0A0, whence ∠A′KA0 = 2π/3 and A′K ∥ BC ∥ B0C0 (fig. 10.4).
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Now, after the inverse transform we obtain the following construction.

1–2. Draw A0C0, BB0 and find their common point K.

3–4. Draw BC, B0C0 and find their common point L.

5. Draw KL and find its common point A′ with the arc A0C0.

6. Draw CA′ and find its second common point B′ with ω.

7. Draw AB′ and find its second common point C ′ with ω.



XIII Geometrical Olympiad in honour of I.F.Sharygin
Solutions. Final round. Second day. 10 grade

5. (A.Garkavy) Let BB′, CC ′ be the altitudes of an acute-angled triangle ABC.
Two circles passing through A and C ′ are tangent to BC at points P and
Q. Prove that A, B′, P , Q are concyclic.

First solution. Since BP 2 = BQ2 = BA · BC ′ and the quadrilaterals
AC ′A′C, AB′A′B are cyclic (AA′ is the altitude) we have CP ·CQ = CB2−
BP 2 = CB2 − BA · BC ′ = BC2 − BC · BA′ = BC · CA′ = CA · CB′.
Clearly this is equivalent to the required assertion.

Second solution. Let C0 be the reflection of C ′ about B. Then BC0 ·BA =
BC ′ · BA = BP 2 = BP · BQ, so the points A, P , C0, Q lie on some
circle ω. Let H0 be the point on ω opposite to A. Then H0C0 ⊥ BC. Hence,
the reflection of H − 0 about B (whic is the midpoint of PQ), lies on the
altitude CC ′; on the other hand, this reflection also lies on the altitude AA′

of the triangle APQ. Thus, the point H0 is symmetric to the orthocenter H
of ABC about B. Therefore, BH0·BB′ = BH ·BB′ = BC ′·BA = BC0·BA,
which shows that B′ also lies on ω (fig.10.5).
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Note. In fact, we implemented a well-known fact that C ′ is the projection
of the orthocenter of the triangle APQ onto its median AB. This yields, in
particular, that the triangles ABC and APQ have a common orthocenter H.



6. (I.I.Bogdanov) Let the insphere of a pyramid SABC touch the faces SAB,
SBC, SCA at points D, E, F respectively. Find all possible values of the
sum of angles SDA, SEB and SFC.
Answer. 2π.
Solution. Since the triangles SCE and SCF are congruent we have ∠SFC =
∠SEC. Similarly ∠SEB = ∠SDB and ∠SDA = ∠SFA. Hence ∠SDA+
∠SEB + ∠SFC = ∠SFA + ∠SDB + ∠SEC = 6π−(∠ADB+∠BEC+∠CFA)

2 .

But the angles ADB, BEC, CFA are equal to the angles AGB, BGC,
CGA, where G is the tangency point of the insphere with the face ABC.
Therefore their sum is equal to 2π.
Note. One can show that, in fact, each of the triples of angles (∠SDA,∠SDB,∠ADB),
(∠SEB,∠SEC,∠BEC), (∠SFC,∠SFA,∠AFC), and (∠AGB,∠BGC,∠CGA)
contains the same three angles, perhaps permuted.

7. (I.Frolov) A quadrilateral ABCD is circumscribed around circle ω centered
at I and inscribed into circle Γ. The lines AB and CD meet at point P , the
lines BC and AD meet at point Q. Prove that the circles PIQ and Γ are
orthogonal.
Solution. Since ABCD is cyclic, the bisectors of the angles formed by its
opposite sidelines are perpendicular. Thus ∠PIQ = 90◦, and PQ is a diam-
eter of circle PIQ. Let R be the common point of the diagonals. Then the
circle PIQ meets PR in a point S such that PR ⊥ QS. Since PR is the
polar of Q with respect to Γ, we obtain that Q and S are inverse with respect
to this circle, thus any circle passing through these two points is orthogonal
to Γ (fig.10.7).
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Note. The assertion of the problem is valid for an arbitrary cyclic quadri-
lateral if we define I as the common point of the bisectors of angles APC
and AQC.

8. (M.Saghafian,Iran; I.I.Bogdanov) Let S be a set of points in the plane, |S| is
even; no three points of S are collinear. Prove that S can be partitioned into
two sets S1 and S2 so that their convex hulls have equal number of vertices.

Solution

Denote by k(X) the number of vertices in the convex hull convX of X.

Let A = A1A2 . . . An = convS, and let T be the set of all points in S lying
(strictly) inside A. Set Xi = {A1, . . . , Ai} ∪ T , Yi = {Ai+1, . . . , An}.
Let i be the minimal index such that k(Xi) ≥ k(Yi). Clearly, i < n. If i = 0,
then we may find a subset T ′ ⊆ T such that k(T ′) = n (removing the points
from T one by one). Then T ′ ⊔ (S \ T ′) is a required partition.

Assume now that 1 ≤ i ≤ n− 1. By the minimality of i, we get

k(Xi)− 1 ≤ k(Xi−1) ≤ k(Yi−1)− 1 ≤ k(Yi).

So, either k(Xi) = k(Yi) (and they form a required partition), or

k(Xi)− 1 = k(Xi−1) = k(Yi−1)− 1 = k(Yi).

Let us consider the latter case.

Set X = Xi, Y = Yi. Since k(X) + k(Y ) is odd, there exists at least one
extra point M ∈ X not on the boundary of convX and conv Y . If M is
outside conv Y , simply move it from X to Y to obtain the required partition.
Otherwise all such extra points lie in convX ∩ conv Y . In particular, this
intersection is nonempty.

Now let X ′ = X\conv Y . Then all points of X ′ lie on the boundary of convX
(all inner points of convX lie also inside conv Y ), hence k(X ′) < k(X) and
so k(X ′) ≤ k(Y ). If k(X ′) = k(Y ) then X ′ and S \ X ′ form the required
partition. Otherwise add to X ′ points from X ∩ conv Y one by one until we
get the set X ′′ with k(X ′′) = k(Y ). Then X ′′ and S \X ′′ form the required
partition.


