Polynomials with integer coefficients

0. $P(x)=x^2+x+41$. Is it true that P(x) is prime for any integer x?

1. Let P be a polynomials with integer coefficients (in short, $P \in \mathbb{Z}[x]$). Prove that

 $(a-b)|(P(a)-P(b)) \quad \forall a, b \in \mathbb{Z}$

2. Let $P \in \mathbb{Z}[x]$, P(2)=1, n is positive integer, P(n)=0. Find n.

3. Let $P \in \mathbb{Z}[x]$ Prove that if *a* and *b* are integers of the same parity (i.e. are both odd or both even) then P(a) and P(b) are of the same parity.

4. Let $P \in \mathbb{Z}[x]$, 6|P(2), 6|P(3). Prove that 6|P(5).

5. A polynomial *P* is such that P(7)=11 and P(11)=13. Prove that at least one of the coefficients of *P* is not integer.

6. Does there exist $P \in \mathbb{Z}[x]$, $P \neq const$ such that P(x) is a prime number for any positive integer x?

7. Let $H(x) = a_n x^n + ... + a_1 x + a_0$ be the polynomial with integer coefficients and $\frac{p}{q}$ an

irreducible fraction such that $H(\frac{p}{q})=0$. Prove that **a**) $p|a_0$ and **b**) $q|a_n$

Definition. Fix a set K of coefficients, e.g., $K = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}_p, \mathbb{C}$. Let K[x] be the set of polynomials with coefficients in K. A polynomial of K[x] is said to be *irreducible* over K if it does not split into the product of lesser degree polynomials of K[x].

8. Over \mathbb{Q} , factorize the polynomials a) x^4+64 **b**) x^4+1 **c**) $x^6-11x^4+36x^2$ into irreducible polynomials.

Extra problems

PIC1. On the graph of a polynomial with integer coefficients two points with integer coordinates are marked. Prove that if the distance between them is integer, then the segment connecting them is parallel to the *x*-axis.

PIC2. $P \in \mathbb{Z}[x]$, m/n is irreducible fraction, P(m/n)=0. Prove that there exists $Q \in \mathbb{Z}[x]$ such that P(x)=(nx-m)Q(x).

PIC3. Let *P* be a nonconstant polynomial with integer coefficients. Prove that among numbers P(1), P(2), P(3), ... there are infinitely many nonprime numbers.

PIC4. $P \in \mathbb{Z}[x]$ is irreducible over \mathbb{Z} . Prove that there exist $Q \in \mathbb{Z}[x]$ such that P(Q) is reducible over \mathbb{Z} .

PIC5. Let *p* be a polynomial with integer coefficients and let $a_1 < a_2 < ... < a_k$ be integers.

a) Prove that there exists $a \in \mathbb{Z}$ such that $p(a_i)$ divides p(a) for all i=1,2,...,k.

b) Does there exist $a \in \mathbb{Z}$ such that the product $p(a_1) \cdot p(a_2) \cdot \dots \cdot p(a_k)$ divides p(a)?

www.ashap.info/Uroki/eng/NYUAD18/index.html