Inequalities and derivatives

Theorems

A. If f'(x) > 0 $\forall x \in (a, b)$ then f(x) is increasing on [a, b], in particular, f(a) < f(b). B. f(b)=f(a)+f'(z)(b-a) for some z between a and b. If $m \le f'(x) \le M$ for any z on [a, b], then $f(a)+m(b-a)\le f(b)\le f(a)+M(b-a)$.

- 1. Prove that $\sin x < x \quad \forall x > 0$
- 2. Prove that $|x + \frac{1}{x}| \ge 2 \quad \forall x \neq 0$
- 3. Prove that a) $e^{x} \ge x+1 \quad \forall x$ b) $e^{x} \ge \frac{x^{2}}{2} + x+1 \quad \forall x > 0 \text{ and } e^{x} < \frac{x^{2}}{2} + x+1 \quad \forall x < 0$ c) $e^{x} \ge \frac{x^{n}}{n!} + \dots + \frac{x^{2}}{2} + x+1 \quad \forall x \text{ and any odd } n$
- 4. Compare e^{π} and π^{e} ?

5. Prove that
$$\cos\sqrt{x} \ge 1 - \frac{x}{2} \quad \forall x \ge 0$$

Credit problems

ID1. Prove that $\sin 2x + \cos x > 1$ $\forall x \in (0, \frac{\pi}{3})$

ID2. Prove or disprove each of following statements

a) If f is continuous and $range(f) = \mathbb{R}$ then f is monotonic. b) If f is monotonic and $range(f) = \mathbb{R}$ then f is continuous. c) If f is monotonic and f is continuous then $range(f) = \mathbb{R}$.

ID3. Does $f(r) \le g(r) \quad \forall r \in \mathbb{Q}$ imply $f(x) \le g(x) \quad \forall x \in \mathbb{R}$ if **a**) f and g are non-decreasing? **b**) f and g are continuous?

ID4. Let $f : \mathbb{R} \to \mathbb{R}$ be a 2 times differentiable function satisfying f(0)=1, f'(0)=0 and $f''(x)-5f'(x)+6f(x)\geq 0 \quad \forall x\geq 0$ Prove that $f(x)\geq 3e^{2x}-2e^{3x} \quad \forall x\geq 0$

ID5. Compare functions $\sin(\tan x)$ and $\tan(\sin x)$ for all $x \in (0, \frac{\pi}{2})$

www.ashap.info/Uroki/eng/NYUAD18/index.html