Remainders and Modular Arithmetic

Lemma 1. Let *a*, *d* be integers, $d \ge 0$. Then there exist unique integers *q* and *r*, such that a = qd + r and $0 \le r < d$.

Definition. The number *q* is called the *quotient*, while *r* is called the *remainder modulo d*.

2. The difference of two integers is divisible by *d* iff these integers have the same remainder modulo *d*.

Definition. This can be written short as $m \equiv n \pmod{d}$ or just $m \equiv_d n$.

3. Prove that the remainder of any prime module 30 is either a prime or 1.

Theorem 4 (modular arithmetic). Let the integer a_1 has the remainder $r_1 \mod d$, and the integer a_2 has the remainder $r_2 \mod d$. Then integers a_1+a_2 , a_1-a_2 , a_1a_2 has the same remainders modulo d as integers r_1+r_2 , r_1-r_2 , r_1r_2 . respectively.

5. Find the last digit in the decimal expression of $777^{555^{333}}$.

6. Let x and y be positive integers. Prove that

a) $x^3 \equiv 10 y^3 \Leftrightarrow x \equiv 10 y$

b) If $10|(x^2+xy+y^2)$ then $100|(x^2+xy+y^2)$

7. The sum of a few odd perfect squares is 1011. Find the minimum number of terms in the sum.

If the polynomial equation has an integer solution, it has a solution modulo any positive integer. And vice versa: if the equation has no solution module some positive integer it has no integer solution.

8. Prove that

a) the equation $n^2+1=0 \pmod{3}$ has no solution.

b) he equation $n^2+1=3m$ has no integer solution.

9 Prove that the following equations has no integer solutions :

a) $x^2+y^2=4z-1$ **b)** $15x^2-7y^2=9$ **c)** $x^2+y^2+z^2=8t-1$

10. Given 100 integers such that the sum of any 99 of them is divisible by 13. Prove that each of the integers is divisible by 13.

Extra problems

Re1. A positive integer N is given to Huda. She divides N by 101 and gets the remainder m>0. Then Huda divides N by m and gets the remainder p. Find the maximum possible value for p and the least possible value for N to get this value for p.

Re2. Let x, y, z be integers such that $S = x^4 + y^4 + z^4$ is divisible by 29. Show that S is divisible by 29⁴

Re3. Find the number of positive integers *n* satisfying the following conditions: $n < 10^{2018}$ and $10^{2018} | n^2 - n$. www.ashap.info/Uroki/eng/NYUAD18/index.html