Theorems in Modular Arithmetic

Theorem 1 (remainder cancellation).

Let *m* and *b* be coprime. Then $ma_1 \equiv_b ma_2 \Leftrightarrow a_1 \equiv_b a_2$.

2. Let *m* is not divisible by the prime *p*. Prove that

a) Remainders of the integers m, 2m, 3m, ..., (p-1)m modulo p are distinct.

b) Remainders of (p-1)! and $m^{p-1}(p-1)!$ modulo p are the same.

c) (Fermat's little theorem). $p|m^{p-1}-1$

3. Let *n* be a positive integer not divisible by 17. Show that either $17|n^8+1$, or $17|n^8-1$.

4. Find the remainder of $50^{10000} \pmod{101}$

5. Prove that for every prime p > 5 the integer 11...1 (p-1 digits) is divisible by p.

6. For a prime p prove that $(a+b)^p \equiv_p a^p + b^p$ for any integers a and b.

7 a) (*Divisibility lemma*). Let *m* be an integer not divisible by the prime *p*. Prove that there is exactly one $n \in \{1, 2, ..., p-1\}$ such that $mn \equiv_p 1$.

b) Prove that for every prime p>2 there are exactly two integers among 1, 2, ..., p-1 which squares are 1 modulo p.

c) (Wilson's theorem) Prove that p|(p-1)!+1 iff p is prime or p=1.

Chinese remainder theorem

Given *n* pairwise coprime positive integers $m_1, m_2, ..., m_n$ and *n* integers $r_1, r_2, ..., r_n$ so that

 $0 \le r_i < m_i$ for each i = 1, 2, ..., n. Let us call $r_i, r_2, ..., r_n$ a set of remainders, and denote $M=m_1m_2...m_n$

Theorem 8. There is exactly one N so that $0 \le N \le M - 1$ and $N \equiv r_i \pmod{m_i}$ for each i = 1, 2, ..., n.

8.1. There are exactly *M* different sets of remainders.

- 8.2. Each integer has the set of remainders.
- 8.3. If two integers A and B has the same set of remainders, then M|A-B.

9. Find the minimal positive integer N so that $N \equiv_{32} 25$ and $N \equiv_{25} 32$

10. Prove that for any coprime positive integers $m_1, m_2, ..., m_n$ and any remainder set there is integer *a* so that $a+1 \equiv r_1 \pmod{m_1}, a+2 \equiv r_2 \pmod{m_2}, ..., a+n \equiv r_n \pmod{m_n}$

Credit problems

MT1. Prove that for any positive integer n there exists n consequtive integers so that each of them is divisible by a perfect square greater then 1.

MT2. For any prime p > 5 prove that $6(p-4)! \equiv_p 1$

MT3 Prove that

a) If a prime $p \equiv_4 3$, then the equation $x^2 = -1$ has no solution modulo p.

b) If $p|n^2+1$ for an integer *n*, then $p \equiv_4 1$

c) there are infinitely many primes $p \equiv_4 1$

MT4. Given $P(x) \in \mathbb{Z}[x]$ Let $N_P(m) = |\{i: 0 \le i \le m-1, P(i):m\}|$. Prove that if k and m are coprime then $N_P(km) = N_P(k)N_P(m)$.

MT5. Let p and q be coprime positive integers. Prove that $\sum_{k=0}^{pq-1} (-1)^{\left\lfloor \frac{k}{p} \right\rfloor + \left\lfloor \frac{k}{q} \right\rfloor} = 0 \text{ when } pq \text{ is even and } = 1$

when *pq* is odd.

www.ashap.info/Uroki/eng/NYUAD18/index.html