Sturm's method for inequalities

1. a) Suppose we replace each factor in the product $100 \cdot 101 \cdot 102 \cdot ... \cdot 200$ with 150. Will the product increase or decrease? The same question for the sum 100+101+...+200. **6)** Will the sum $\frac{1}{100} + \frac{1}{101} + \dots + \frac{1}{199} + \frac{1}{200}$ increase or decrease, if each term be replaced with $\frac{1}{150}$?

2. Let the sum of two positive real numbers a and b is fixed. Which of the following expressions increase and which decrease if a and b be moved closer to each other?

a)
$$ab$$
 b) $a^2 + b^2$ **c)** $\frac{1}{a} + \frac{1}{b}$ **d)** $a^4 + b^4$ **e)** $\sqrt{a} + \sqrt{b}$ **f)** $a^n + b^n$ **g)** $\frac{1}{a^n} + \frac{1}{b^n}$.

Sturm' method. Make a chain of steps, increasing the number of equal terms one by one. If each step increase LHS and decrease RHS, and at last you get LHS=RHS, then originally LHS<RHS.
3 Prove that for all 100-gons inscribed in the circle the regular 100-gon has the greatest area.
4. Prove the inequality for *arithmetic mean*, *geometric mean* and *harmonic mean*:

if
$$a_{1,}a_{2,}...,a_n > 0$$
 then $\frac{a_1 + a_2 + ... + a_n}{n} \ge \sqrt[n]{a_1 a_2 ... a_n} \ge \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n}}$

5. Given 100 pens painted 7 colours. A pair of pens considered as *good* if they are of different colour. Find the maximal number of good pairs.

6. Compare $(1+\frac{1}{x_1})(1+\frac{1}{x_2})...(1+\frac{1}{x_n})$ and $(n+1)^n$ for $x_1, x_2, ..., x_n > 0, x_1+x_2+...+x_n = 1$ 7. $\sqrt{1+4a} + \sqrt{1+4b} + \sqrt{1+4c} + \sqrt{1+4d}$ and $4\sqrt{2}$ for a, b, c, d > 0, a+b+c+d=18. A *n*-gon has the inscribed circle of radius *R*. Find the minimum perimeter of the polygon.

Credit problems

SI1. For *n* positive numbers *a*,*b*,...,*g* and real $p \neq 0$ denote $A_p = (\frac{a^p + b^p + ... + g^p}{n})^{\frac{1}{p}}$.

Compare A_p and A_q for p < q.

SI2. For all polygons inscribed in the circle find the polygon with the greatest ratio of the area to the number of sides.

SI3. Given
$$x_{1,}x_{2,}...,x_{k} > 0$$
, $x_{1}^{2} + ... + x_{k}^{2} < \frac{x_{1} + ... + x_{k}}{2} < \frac{x_{1}^{3} + ... + x_{k}^{3}}{4}$

a) Prove that k > 50.

b) Give an example of these numbers for some *k*.

c) Find minimum possible value for k.

www.ashap.info/Uroki/eng/NYUAD18/index.html