Rank and Determinant

Rank

1. Given a square matrix such as its columns be linearly independent, prove that its rows are linearly independent.

Definition. Such a matrix called nondegenerate or nonsingular.

Theorem 2. In any rectangular matrix *A*, the dimension of the linear span of rows is equal to the dimension of the linear span of columns.

Definition. Such dimension is called *rank* of A and is commonly denoted rank(A) or rk(A).

3. Prove that $|\operatorname{rank} A - \operatorname{rank} B| \leq \operatorname{rank} (A+B) \leq \operatorname{rank} A + \operatorname{rank} B$.

Determinant is the function $\det: M_{n,n} \to K$

Good to remember

a) If M is a triangular matrix, det(M) is the product of diagonal entries;

b) Determinant is a linear function on each row and each column;

c) Determinant is skew-symmetric on rows and on columns;

d) A is nondegenerate $\Leftrightarrow \det A \neq 0$

e) det $A^T = \det A$;

f) det(AB) = det A det B.

4. Prove that

a) det
$$A^{-1} = \frac{1}{\det A}$$
;

b) $\forall n \in \mathbb{Z} \quad \det A^n = (\det A)^n$;

c) If *n* be an odd positive integer and *A* be *n*x*n* matrix and $A^T = -A$, then det A = 0.

5. Find the minimum number of nonzero entries in a nondegenerate matrix of size $n \times n$.

Definition. A *minor* of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows or columns. The *size* of a minor is the size of the smaller matrix.

Theorem 6. Rank of matrix A is the maximum size of nonsero minor of A.

7. Prove that $\operatorname{rank} AB \le \min(\operatorname{rank} A, \operatorname{rank} B)$.

Credit problems

RD1. Let *A* and *B* be matrices of size $n \times n$, *AB*=0. Prove that $\min(\operatorname{rank} A, \operatorname{rank} B) \le \frac{n}{2}$

RD2. What is the maximum possible value of determinant of a 3x3-matrix whose entries are either 0 or 1 ? **RD3.** Let *n* be an odd positive integer and *A* be *nxn*-matrix with entries $a_{ij}=2$ for i=j, $a_{ij}=1$ for $i-j=\pm 2 \pmod{n}$ and $a_{ij}=0$ otherwise. Find det *A*.

RD4. In the linear space of all real $n \times n$ matrices, find the maximum possible dimension of a linear subspace V such that $\forall X, Y \in V$ trace(XY)=0 (The trace of a matrix is the sum of the diagonal entries.)

RD5. Let A be an $n \times n$ -matrix with integer entries and b_1, \dots, b_k be integers satisfying det $A = b_1 \cdot \dots \cdot b_k$. Prove that there exist $n \times n$ -matrices B_1, \dots, B_k with integer entries such that $A = B_1 \cdot \dots \cdot B_k$ and det $B_i = b_i$ $\forall i = 1, \dots, k$.

www.ashap.info/Uroki/eng/NYUAD18/index.html