Matrix Algebra

Here all the matrices are $n \times n$ matrices unless otherwise stated.

Definition. A matrix A is symmetric if $A^T = A$, is skew-symmetric if $A^T = -A$, is orthogonal if $A^T A = Id$.

1. Find an example of a matrix that is **a**) symmetric, orthogonal and distinct from Id; **b**) skew-symmetric and orthogonal.

2. Prove that a) the set of all symmetric *nxn*-matrices is a vector space and find its dimension;

b) the set of all skew-symmetric *n*x*n*-matrices is a vector space and find its dimension;

c) the product of any two orthogonal matrices is an orthogonal matrix.

3. Prove that each square matrix has unique representation as the sum of symmetric and skew-symmetric matrices.

4. a) Find a real 2×2 matrix A such that $A^2 = -Id$;

b*) Prove that $\forall p, q \in \mathbb{R}$ there is a 2×2 matrix A such that $A^2 + pA + qId = 0$

5. a) For any positive integer *m* find a matrix *A* such that $A^{m-1} \neq 0, A^m = 0$

b*) For given *n* what is the minimum size of such *A*?

Definition. Square matrix A is *invertible* there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = Id$. **Theorem 6.** A is invertible \Leftrightarrow A is nondegenerate.

7. *A* is square matrix. a) $A^2 = 0$; b) $A^m = 0, m \in \mathbb{N}$. Prove that Id + A is invertible. Definition. Let *P* be an invertible matrix. Denote $S^P = P^{-1}SP$

8. Prove that a) $(A+B)^P = A^P + B^P$; b) $(AB)^P = A^P B^P$; c) $(A^{-1})^P = (A^P)^{-1}$; d) $A^{PQ} = (A^P)^Q$. 9. Let Q be an orthogonal matrix. Prove that a) $(A^T)^Q = (A^Q)^T$; b) If A be symmetric (skew-symmetric, orthogonal) so is A^Q .

Definition. A matrix A is *similar* to B if there is nonsingular matrix P such that $B = A^{P}$. **10.** Find all matrices similar to Id.

11. Prove that **a**) If A is similar to B then B is similar to A; b) If A is similar to B and B is similar to C then A is similar to C.

Theorem 12. If A and B are similar then a) det(A)=det(B), b) tr(A)=tr(B).

13. Find en example of two nonsimilar matrices with same trace and determinant.

Theorem 14. (*without proof*) Let S be a real symmetric matrix. Then S is similar to a real diagonal matrix.

15. Does there exist a real 3×3 matrix A such that tr(A) = 0 and $A^2 + A = Id$?

Credit problems

MA1. Let *n* be an odd integer and *S* be a symmetric $n \times n$ matrix over \mathbb{Z}_2 with zeroes on the main diagonal. Prove that *S* is singular.

MA2. Prove that any nondegenerate matrix can be represented as a product of symmetric and orthogonal matrices.

MA3. Let A, B and C be real square matrices of the same size, and suppose that A is invertible.

Prove that if $(A-B)C = BA^{-1}$, then $C(A-B) = A^{-1}B$.

MA4. a) For any integer n > 2 and two $n \times n$ matrices with real entries A; B that satisfy the equation $(A+B)^{-1} = A^{-1} + B^{-1}$ prove that det(A) = det(B).

b) Does the same conclusion follow for matrices with complex entries?

MA5. Let k and n be positive integers. A sequence $(A_1, ..., A_k)$ of $n \times n$ real matrices is *good* if $A_i^2 \neq 0$ $\forall i=1,...,k$ but $A_iA_i=0$ for $1 \le i, j \le k, i \ne j$. Show that $k \le n$ in all good

sequences, and give an example of a good sequence with k = n for each n.