Continuous Functions

All functions below be $f: \mathbb{R} \to \mathbb{R}$ unless otherwise stated.

Each elementary function is continuous on its domain. Addition, subtraction, multiplication, division by nonzero and composition of continuous functions give continuous functions.

1. f(lnx) is continuous for all x > 0. Does f(x) be continuous for all x?

2. a) Both f(x-1)+7f(x+1) and f(x+1)+7f(x-1) be continuous. Is f(x) continuous?

b) For every real a > 1, the function f(x) + f(ax) be continuous, prove that f is continuous.

Intermediate value theorem. If the real-valued function f is continuous on the closed interval [a, b] and k is some number between f(a) and f(b), then there is some number c in [a, b] such that f(c) = k.

3. Let f(x) be continuous on [a, b] and $f(a) f(b) \le 0$. Prove that f(x) has a root on [a, b].

4. Prove that some chord cut from a circle exactly 1/3 of its area.

5. $f(x+1)f(x)+f(x+1)+1=0 \quad \forall x$. Prove that f is discontinuous.

6. Given $x_1, x_2, ..., x_n \in [0, 2]$, prove that $|x - x_1| + |x - x_2| + ... + |x - x_n| = n$ for some $x \in [0, 2]$

7. Let f(x) be continuous on [0, 100] and f(0)=f(100). Prove that $\exists a \in [0, 99]: f(a)=f(a+1)$.

Extreme value theorem. If the real-valued function f is continuous on the closed interval [a,b], then the function attains its maximum, i.e. there exists $c \in [a,b]$ with $f(c) \ge f(x) \quad \forall x \in [a,b]$. The same is true of the minimum of f.

8. Let f be continuous and $f(x^2) - f^2(x) \ge 0.25 \quad \forall x$. Does that imply f has an extremum point?

9. Does there exist a continious function $f: \mathbb{R} \to \mathbb{R}$ that attains each real value exactly 3 times?

10. Prove that $\forall a_1, b_1, a_2, b_2, \dots, a_n, b_n \in \mathbb{R}$ the equation $a_1 \sin x + b_1 \cos x + a_2 \sin 2x + b_2 \cos 2x + \dots + a_n \sin nx + b_n \cos nx = 0$ has a solution.

11. Given $f:\mathbb{R}_{pos} \to \mathbb{R}_{pos}$ such that $f(x^y) = f(x)^{f(y)} \quad \forall x, y \in \mathbb{R}_{pos}$,

a) find all such continuous functions, b) find all such functions.

Credit problems

CF1. (IMC6.2.2) Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for any real numbers a < b, the image f([a, b]) is a closed interval of length b-a.

CF2. (IMC8.1.1) Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x+q)-f(x) \in \mathbb{Q} \quad \forall x \in \mathbb{R}, q \in \mathbb{Q}$.

www.ashap.info/Uroki/eng/NYUAD18/index.html